Skip to main content
Log in

LlogL-Integrability of the Velocity Gradient for Stokes System with Drifts in L(BMO1)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

For any weak solution of the Stokes system with drifts in L(BMO−1), a reverse Hölder inequality and LlogL-higher integrability of the velocity gradients are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bonami, T. Iwaniec, P. Jones, and M. Zinsmeister, “On the product of functions in BMO and H 1,” Ann. Inst. Fourier, 57, No. 5, 1405–1439 (2007).

    Article  MathSciNet  Google Scholar 

  2. H.-J. Choe and M. Yang, “Local kinetic energy and singularities of the incompressible Navier–Stokes equations,” arXiv:1705.04561 (2017).

  3. L. Eskauriaza, G. A. Seregin, and V. Šverák, “L 3,∞-solutions of Navier–Stokes equations and backward uniqueness,” Uspekhi Mat. Nauk, 58, No. 2 (350), 3–44 (2003).

  4. S. Friedlander and V. Vicol, “Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics,” Ann. Inst. H. Poincaré, 28, 2, 283–301 (2011).

    Article  MathSciNet  Google Scholar 

  5. M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, New Jersey (1983).

    MATH  Google Scholar 

  6. L. Greco, T. Iwaniec, and G. Moscariello, “Limits of the improved integrability of the volume forms,” Indiana Univ. Math. J., 44, No. 2, 305–339 (1995).

    Article  MathSciNet  Google Scholar 

  7. T. Iwaniec and A. Verde, “On the operator L(f) = flog| f|,” J. Funct. Anal., 169, No. 2, 391–420 (1999).

    Article  MathSciNet  Google Scholar 

  8. T. Iwaniec and J. Onninen, “H 1-estimates of Jacobians by subdeterminants,” Math. Ann., 324, No. 2, 341–358 (2002).

    Article  MathSciNet  Google Scholar 

  9. G. Koch, N. Nadirashvili, A. Seregin, and V. Šverák, “Liouville theorems for the Navier–Stokes equations and applications,” Acta Math., 203, No. 1, 83–105 (2009).

    Article  MathSciNet  Google Scholar 

  10. H. Koch and D. Tataru, “Well-posedness for the Navier–Stokes equations,” Adv. Math., 157, No. 1, 22–35 (2001).

    Article  MathSciNet  Google Scholar 

  11. V. Liskevich and Q. Zhang, “Extra regularity for parabolic equations with drift terms,” Manuscripta Math., 113, No. 2, 191–209 (2004).

    Article  MathSciNet  Google Scholar 

  12. V. G. Maz’ya and I. E. Verbitsky, “Form boundedness of the general second-order differential operator,” Comm. Pure Appl. Math., 59, No. 9, 1286–1329 (2006).

    Article  MathSciNet  Google Scholar 

  13. A. I. Nazarov and N. N. Ural’tseva, “The Harnack inequality and related properties of solutions of elliptic and parabolic equations with divergence-free lower-order coefficients,” St. Petersburg Math. J., 23, No. 1, 93–115 (2012).

    Article  MathSciNet  Google Scholar 

  14. M. E. Schonbek and G. Seregin, “Time decay for solutions to the Stokes equations with drift,” to appear in Commun. Contemp. Math.

  15. G. A. Seregin, “Reverse Hölder inequality for a class of suitable weak solutions to the Navier-Stokes equations,” Zap. Nauchn. Semin. POMI, 362, 325–336 (2008).

    Google Scholar 

  16. G. Seregin, L. Silvestre, V. Šverák, and A. Zlatoš, “On divergence-free drifts,” J. Differential Equations, 252, 1, 505–540 (2012).

    Article  MathSciNet  Google Scholar 

  17. G. Seregin and V. Šverák, “On Type I singularities of the local axi-symmetric solutions of the Navier–Stokes equations,” Comm. PDEs, 34, 171–201 (2009).

    Article  MathSciNet  Google Scholar 

  18. L. Silvestre and V. Vicol, “Hölder continuity for a drift-diffusion equation with pressure,” Ann. Inst. H. Poincaré, 29, No. 4, 637–652 (2012).

    Article  MathSciNet  Google Scholar 

  19. E. Stein, “Note on the class LlogL, Studia Math., 32, 305–310 (1969).

    Article  MathSciNet  Google Scholar 

  20. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey (1970).

    MATH  Google Scholar 

  21. E. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey (1993).

    MATH  Google Scholar 

  22. Q. Zhang, “Local estimates on two linear parabolic equations with singular coefficients,” Pacific J. Math., 223, No. 2, 367–396 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Burczak.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 459, 2017, pp. 35–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burczak, J., Seregin, G. LlogL-Integrability of the Velocity Gradient for Stokes System with Drifts in L(BMO1). J Math Sci 236, 399–412 (2019). https://doi.org/10.1007/s10958-018-4120-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4120-6

Navigation