Skip to main content
Log in

Spin Glass Behavior in La0.7Ca0.23Sr0.07MnO3 Nanofibers Obtained by Electrospinning

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This work contributes to the development of new nanostructured mixed valence manganites and to explore and optimize their magnetic properties at 1-D level. Nanofibers of La0.7Ca0.23Sr0.07MnO3 manganite were fabricated using the electrospinning method and three different heat treatments to determine how the nanostructure affects its thermomagnetic behavior. From scanning electron microscopy, nanofibers morphology was observed and average diameters of 75, 94, and 97 nm were identified after heat treatments of 973, 1073, and 1173 K, respectively. According to X-ray diffraction technique, a single-phase orthorhombic structure was defined for each sample. Average crystallite sizes were determined as 47, 49, and 58 nm. A ferromagnetic to paramagnetic transition with Curie temperatures of 297, 305, and 314 K were identified, respectively. Furthermore, a glassy state was induced by nanofibers agglomeration. The spin glass and irreversible temperatures diminished as the magnetic field was increased and a highly anisotropic state was evidenced for all samples. Thermomagnetic behavior in manganites showed to be significantly influenced by the one-dimensional structure and exposed how the dimensionality proportionated by the fabrication method can be used to adjust magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dang, N.T., Zakhvalinskii, V.S., Kozlenko, D.P., Phan, T.-L., Kichanov, S.E., Trukhanov, S.V., Trukhanov, A.V., Nekrasova, Y.S., Taran, S.V., Ovsyannikov, S.V., Jabarov, S.H., Trukhanova, E.L.: Effect of Fe doping on structure, magnetic and electrical properties La0.7Ca0.3Mn0.5Fe0.5O3 manganite. Ceram. Int. 44, 14974–14979 (2018). https://doi.org/10.1016/j.ceramint.2018.05.124

    Article  Google Scholar 

  2. Ezaami, A., Sellami-Jmal, E., Chaaba, I., Cheikhrouhou-Koubaa, W., Cheikhrouhou, A., Hlil, E.K.: Effect of elaborating method on magnetocaloric properties of La0.7Ca0.2Ba0.1MnO3 manganite. J. Alloys Compd. 685, 710–719 (2016). https://doi.org/10.1016/j.jallcom.2016.05.332

    Article  Google Scholar 

  3. Gómez, A., Chavarriaga, E., Supelano, I., Parra, C.A., Morán, O.: Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping. Phys. Lett. A. 382, 911–919 (2018). https://doi.org/10.1016/j.physleta.2018.01.030

    Article  ADS  Google Scholar 

  4. Zhou, X., Zhao, Y., Cao, X., Xue, Y., Xu, D., Jiang, L., Su, W.: Fabrication of polycrystalline lanthanum manganite (LaMnO3) nanofibers by electrospinning. Mater. Lett. 62, 470–472 (2008). https://doi.org/10.1016/j.matlet.2007.05.063

    Article  Google Scholar 

  5. Hayat, K., Shaheen Shah, S., Yousaf, M., Javid Iqbal, M., Ali, M., Ali, S., Ajmal, M., Iqbal, Y.: Processing, device fabrication and electrical characterization of LaMnO3 nanofibers. Mater. Sci. Semicond. Process. 41, 364–369 (2016). https://doi.org/10.1016/j.mssp.2015.10.009

    Article  Google Scholar 

  6. Hayat, K., Javid Iqbal, M., Rasool, K., Iqbal, Y.: Device fabrication and dc electrical transport properties of barium manganite nanofibers (BMO-NFs). Chem. Phys. Lett. 616-617, 126–130 (2014). https://doi.org/10.1016/j.cplett.2014.10.046

    Article  ADS  Google Scholar 

  7. Yensano, R., Pinitsoontorn, S., Amornkitbamrung, V., Maensiri, S.: Fabrication and magnetic properties of electrospun La0.7Sr0.3MnO3 nanostructures. J. Supercond. Nov. Magn. 27, 1553–1560 (2014). https://doi.org/10.1007/s10948-013-2474-z

    Article  Google Scholar 

  8. Li, L., Liang, L., Wu, H., Zhu, X.: One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications. Nanoscale Res. Lett. 11, 121 (2016). https://doi.org/10.1186/s11671-016-1320-1

    Article  ADS  Google Scholar 

  9. Yi, C., Lin, B., Sun, Y., Yang, H., Zhang, X.: Structure, morphology and electrochemical properties of LaxSr1-xCo0.1Mn0.9O3-δ perovskite nanofibers prepared by electrospinning method. J. Alloys Compd. 624, 31–39 (2015). https://doi.org/10.1016/j.jallcom.2014.10.178

    Article  Google Scholar 

  10. Moghaddam, H.M., Nasirian, S.: Dependence of activation energy and lattice strain on TiO2 nanoparticles? Nanoscience Methods. 1(1), 201–212 (2012). https://doi.org/10.1080/17458080.2011.620023

    Article  Google Scholar 

  11. Shang, C., Guo, S., Wang, R.: Positive to negative ZFC exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. Sci. Rep. 6(25703), (2016). https://doi.org/10.1038/srep25703

  12. Selmi, R., Cherif, W., Barquín, L.F., de la Fuente Rodríguez, M., Ktari, L.: Structure and spin glass behavior in La0.77Mg0.23-x MnO3 (0 ≤ x ≤ 0.2) manganites. J. Alloys Compd. 738, 528–539 (2018). https://doi.org/10.1016/j.jallcom.2017.12.189

    Article  Google Scholar 

  13. Ling, L., Zhang, L., Zhang, Z., Pi, L., Tan, S., Zhang, Y.: Cluster-glass state and the effect of A-site magnetism in electron-doped manganites. Solid State Commun. 149, 1168–1172 (2009). https://doi.org/10.1016/j.ssc.2009.05.005

    Article  ADS  Google Scholar 

  14. Fertman, E., Dolya, S., Desnenko, V., Beznosov, A., Kajnaková, M., Feher, A.: Cluster glass magnetism in the phase separated Nd2/3Ca1/3MnO3 perovskite. J. Magn. Magn. Mater. 324, 3213–3217 (2012). https://doi.org/10.1016/j.jmmm.2012.05.043

    Article  ADS  Google Scholar 

  15. Tiwari, P., Rath, C.: Evolution of structure and magnetic properties of stoichiometry and oxygen rich LaMnO3 nanoparticles. J. Magn. Magn. Mater. 441, 635–641 (2017). https://doi.org/10.1016/j.jmmm.2017.06.020

    Article  ADS  Google Scholar 

  16. Ade, R., Singh, R.: Effect of grain size on charge and spin correlations in Bi0.5Ca0.5MnO3 manganite nanoparticles. J. Magn. Magn. Mater. 418, 273–279 (2016). https://doi.org/10.1016/j.jmmm.2016.02.028

    Article  ADS  Google Scholar 

  17. Rostamnejadi, A., Venkatesan, M., Salamati, H., Ackland, K., Gholizadeh, H., Kameli, P., Coey, J.M.D.: Magnetic properties, exchange bias, and memory effects in core-shell superparamagnetic nanoparticles of La0.67Sr0.33MnO3. J. Appl. Phys. 121, 173902 (2017). https://doi.org/10.1063/1.4982893

    Article  ADS  Google Scholar 

  18. Joy, P.A., Kumar, P.S.A., Date, S.K.: The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys. Condens. Matter. 10, 11049 (1998). http://iopscience.iop.org/0953-8984/10/48/024)

    Article  ADS  Google Scholar 

  19. Issaoui, F., Bejar, M., Dhahri, E., Bekri, M., Lachkar, P., Hlil, E.K.: Crystal, spin glass, Griffiths phases and magnetocaloric properties of the Sr1.5Nd0.5MnO4 compound. Physica B. 414, 42–49 (2013). https://doi.org/10.1016/j.physb.2012.12.039

    Article  ADS  Google Scholar 

  20. Zhang, Y.: Magnetic relaxation behavior in Tb-doped perovskite manganite. J. Magn. Magn. Mater. 323, 1–3 (2011). https://doi.org/10.1016/j.jmmm.2010.08.045

    Article  ADS  Google Scholar 

  21. Pana, O., Soran, M.L., Leostean, C., Macavei, S., Gautron, E., Teodorescu, C.M., Gheorghe, N., Chauvet, O.: Interface charge transfer in polypyrrole coated perovskite manganite magnetic nanoparticles. J. Appl. Phys. 111, 044309 (2012). https://doi.org/10.1063/1.3686662?ver=pdfcov

    Article  ADS  Google Scholar 

  22. Nisha, P., Pillai, S.S., Varma, M.R., Suresh, K.G.: Influence of cobalt on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33MnO3. J. Magn. Magn. Mater. 327, 189–195 (2013). https://doi.org/10.1016/j.jmmm.2012.09.029

    Article  ADS  Google Scholar 

  23. Manh, D.H., Phong, P.T., Nam, P.H., Tung, D.K., Phuc, N.X., Lee, I.-J.: Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications. Physica B. 444, 94–102 (2014)

    Article  ADS  Google Scholar 

  24. Londoñoo-Calderon, V., Rave-Osorio, L.C., Restrepo, J., Játiva, J., Jurado, J.F., Arnache, O., Restrepo-Parra, E.: Structural and magnetic properties of La1-x (Ca,Sr)xMnO3 powders produced by the hydrothermal method. J. Supercond. Nov. Magn. 31, 4153–4162 (2018). https://doi.org/10.1007/s10948-018-4625-8

    Article  Google Scholar 

  25. C. A. Cardoso, F. M. Araujo-Moreira, V. P. S. Awana, E. Takayama-Muromachi, O. F. de Lima, H. Yamauchi and M. Karppinen. Spin glass behavior in RuSr2Gd1.5Ce0.5Cu2O10-δ, Phys. Rev. B 67, 020407(R) (2003). DOI: https://doi.org/10.1103/PhysRevB.67.020407

  26. Patricia Darlene Mitchler. Characterization of Hysteresis in Magnetic Systems: A Preisach Approach (PhD Thesis) (2000). Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba

  27. Kumar, A., Tandon, R.P., Awana, V.P.S.: Successive spin glass, cluster ferromagnetic and superparamagnetic transitions in RuSr2Y1.5Ce0.5Cu2O10 complex magneto-superconductor. Eur. Phys. J. B. 85(238), (2012). https://doi.org/10.1140/epjb/e2012-30075-5

Download references

Acknowledgements

This work was supported by Professor Professional Development Program [F-PROMEP-39/Rev-04] SEP, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Burrola-Gándara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burrola-Gándara, L.A., Vázquez-Zubiate, L., Carrillo-Flores, D.M. et al. Spin Glass Behavior in La0.7Ca0.23Sr0.07MnO3 Nanofibers Obtained by Electrospinning. J Supercond Nov Magn 32, 2501–2508 (2019). https://doi.org/10.1007/s10948-018-4974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4974-3

Keywords

Navigation