Skip to main content
Log in

Effect of the Laser Scan Rate on the Microstructure, Magnetic Properties, and Microhardness of Selective Laser-Melted FeSiB

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

FeSiB alloys have been fabricated by selective laser melting (SLM) using a laser scan rate of 0.1–1.5 m/s, laser power of 90 W, scan line spacing of 40 μ m, and layer thickness of 50 μ m. X-ray diffraction, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, atomic force microscopy, profilometer, microdurometer, and vibrating sample magnetometer have been used to investigate the structural, microstructural, roughness, microhardness, and magnetic property changes during the laser melting process. The produced samples exhibit a nanocomposite structure consisting of nanocrystalline α-Fe0.95Si0.05 and Fe2B phases embedded into an amorphous ε-FeSi-type matrix. The selective laser-melted samples show high density, low surface roughness, higher microhardness values (1654–2273 Hv), and soft magnetic properties (Ms = 188.6–199 emu/g and Hc = 43.8–73 Oe).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chua, C.K., Leong, K.F.: 3D Printing and Additive Manufacturing: Principles and Applications, 4th ed. World Scientific Publishing Co. Pte. Ltd, Singapore (2014)

    Book  Google Scholar 

  2. Yasa, E., Kruth, J., Deckers, J.: Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. J. Man. Techn. 60, 263–266 (2011)

    Article  Google Scholar 

  3. Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012)

    Article  Google Scholar 

  4. Buchbinder, D., Schleifenbaum, H., Heidrich, S., Meiners, W., Bültmann, J.: High power selective laser melting (HPSLM) of aluminium parts. Phys. Procedia A 12, 271–278 (2011)

    Article  ADS  Google Scholar 

  5. Song, B., Dong, S., Coddet, P., Zhou, G., Ouyang, S., Liao, H., Coddet, C.: Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J. Alloys Compds. 579, 415–419 (2013)

    Article  Google Scholar 

  6. Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J. Alloys Compds. 585, 713–721 (2014)

    Article  Google Scholar 

  7. Yadroitsev, I.: Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders. LAP Lambert Academic Publishing AG & Co KG (2009)

  8. Zhang, B.C., Liao, H.L., Coddet, C.: Microstructure evolution and density behavior of CP Ti parts elaborated by self-developed vacuum selective laser melting system. Appl. Surf. Sci. 279, 310–316 (2013)

    Article  ADS  Google Scholar 

  9. Ma, M., Wang, Z., Wang, D., Zeng, X.: Control of shape and performance for direct laser fabrication of precision large-scale metal parts with 316L stainless steel. Opt. Laser Technol. 45, 209–210 (2013)

    Article  ADS  Google Scholar 

  10. Efimov, Y.V., Mukhin, G.G., Lazarev, E.M., Korotkov, N.A., Ryabtsev, L.A., Dmitriev, V.N., Frolova, T.M.: The structure of rapidly hardened Fe-Si-B alloys. Russ. Metall. 4, 167–173 (1986)

    Google Scholar 

  11. Haginaro, M., Inoue, A., Masu, T.: Mechanical properties of FeSiB amorphous wires produced by in-rotating-water spinning method. Metal. Trans. A 13, 373–382 (1982)

    Article  Google Scholar 

  12. Suwa, Y., Agatsuma, S., Hashi, S., Ishiyama, K.: Study of strain sensor using FeSiB magnetoresistive thin films. IEEE Trans. Magn. 46(2), 666–669 (2010)

    Article  ADS  Google Scholar 

  13. Li, S., Horikawa, S., Park, M., Chai, Y., Vodyanoy, V.J., Chi, B.A.: Amorphous metallic glass biosensors. Intermetallics 30, 80–85 (2012)

    Article  Google Scholar 

  14. Inoue, A., Komuro, M., Masumoto, T.: Fe-si-b amorphous alloys with high silicon concentration. J. Mater. Sci. 19, 4125 (1984)

    Article  ADS  Google Scholar 

  15. Alleg, S., Ibrir, M., Fenineche, N.E., Azzaza, S., Suñol, J.J.: Magnetic and structural characterization of the mechanically alloyed Fe75Si15B10 powders. J. Alloys Compds. 494, 109–115 (2010)

    Article  Google Scholar 

  16. Murty, B.S., Ranganathan, S.: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43(3), 101–141 (1998)

    Article  Google Scholar 

  17. Quispe Marcatoma, J., Peña Rodrígueze, V.A., Baggio-Saitovitch M.: Fesib amorphous alloy prepared by mechano-synthesis. Hyp. Int. 134, 207–212 (2001)

    Article  ADS  Google Scholar 

  18. Takahara, Y., Matsuda, H.: Effect of cold rolling on the physical properties and the structure of Fe79B16Si15 amorphous alloy. Trans. JIM 28, 535 (1987)

    Article  Google Scholar 

  19. Coïsson, M., Celegato F., Olivetti E., Tiberto P., Vinai F., Baricco M.: Stripe domains and spin reorientation transition in Fe78B13Si9 thin films produced by rf sputtering. J. Appl. Phys. 104(3), 033902 (2008)

    Article  ADS  Google Scholar 

  20. Alleg, S., Ibrir, M., Fenineche, N.E., Suñol, J.J.: Microstructure and magnetic properties of HVOF thermally sprayed Fe75Si15B10 coatings. Surf. Coat. Techn. 205(2), 281–286 (2010)

    Article  Google Scholar 

  21. Dong, S., Song, B., Zhang, X., Deng, C., Fenineche, N.E., Hansz, B., Liao, H., Coddet, C.: Fabrication of FeSiB magnetic coatings with improved saturation magnetization by plasma spray and dry-ice blasting. J. Alloys Compds. 584, 254–260 (2014)

    Article  Google Scholar 

  22. Sypień, A., Kusinski, J., Stobiecki, T., Czapkiewicz, M.: TEM Study of the FeSiB amorphous alloy nanocrystallized by means of nd:YAG pulsed laser heating. Mat. Chem. Phys. 81, 390–392 (2003)

    Article  Google Scholar 

  23. Katakam, S., Hwang, J.Y., Vora, H., Harimkar, S.P., Banerjee, R., Dahotre, N.B.: Laser-induced thermal and spatial nanocrystallization of amorphous Fe–Si–B alloy. J. Scr. Mater. 66, 538–54 (2012)

    Article  Google Scholar 

  24. Lutterotti, L.: MAUD CPD Newsletter (IUCr), 24 (2000)

  25. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. Acta Crystallogr. 2, 65–71 (1969)

    Google Scholar 

  26. Vocadlo, L., Knight, K.S., Price, G.D., Wood, I.G.: Thermal expansion and crystal structure of FeSi between 4 and 1173 K determined by time-of-flight neutron powder diffraction. Phys. Chem. Minerals 29, 132–139 (2002)

    Article  ADS  Google Scholar 

  27. Le Bail, A.: Modelling the silica glass structure by the Rietveld method. J. Non-Crystalline Solids 183, 39–42 (1995)

    Article  ADS  Google Scholar 

  28. Tokunaga, T., Ohtani, H., Hasebe, M.: Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Fe–Si–B system. Calphad 28, 354–362 (2004)

    Article  Google Scholar 

  29. de Boer, F., Boom, R., Mattens, W.C.M., Miedema, A.R., Niessen, A.K.: Cohesion in Metals, p 276. North-Holland, Amsterdam (1988)

    Google Scholar 

  30. Omori, S., Moriyama, J.: Thermodynamic properties of Fe2B and FeB by EMF measurements of cells with solid oxide electrolytes. Trans. Jpn. Inst. Met. 217, 90–796 (1980)

    Google Scholar 

  31. Raghavan, V.: B-fe-si (boron-iron-silicon). journal of phase equilibria and diffusion, materials park 28, 380–381 (2007)

    Article  Google Scholar 

  32. Iga, A., Tawara, Y., Yanase, A.: Magnetocrystalline anisotropy of Fe2B. J. Phys. Soc. Jap. 21(2), 404–404 (1966)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Algérie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safia Alleg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alleg, S., Drablia, R. & Fenineche, N. Effect of the Laser Scan Rate on the Microstructure, Magnetic Properties, and Microhardness of Selective Laser-Melted FeSiB. J Supercond Nov Magn 31, 3565–3577 (2018). https://doi.org/10.1007/s10948-018-4621-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4621-z

Keywords

Navigation