Skip to main content
Log in

Composites Produced from Natural Rubber and Chrome-Tanned Leather Wastes: Evaluation of their In Vitro Toxicological Effects for Application in Footwear and Textile Industries

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A new composite has been developed from natural rubber and chrome-tanned leather waste for use in footwear and textile industries. The contribution of this material to environmental quality and sustained development should be highligh because chrome tanned leather wastes, a major environmental problem, can be recycled. However, the safety of this new material for human use is questionable, as it is already well reported in the literature that chromium, particularly in its hexavalent oxidation state, can be genotoxic and carcinogenic to living beings. Thus, the aim of this study was to evaluate in vitro biocompatibility of this composite material for possible use in the footwear and textile industries, through cytotoxicity, cell adhesion, and genotoxicity tests. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure both concentrations of total and hexavalent chromium. Based on the findings, it was concluded that the composite exhibits low levels of cytotoxicity and genotoxicity, and possesses favorable properties for initial cell adhesion. Furthermore, it was verified that the composites released low concentrations of chromium and that the predominant species released would be trivalent chromium. The results of the present study open the possibility of the incorporation of solid residues of tanned leather into chromium without necessarily the chromium contained in these residues influences the toxicity and genotoxicity of this new material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garcia NG, Reis EAP, Budemberg ER, Agostini DL da S, Salmazo LO, Cabrera FC, Job AE (2015) J Appl Polym 132:41636

    Google Scholar 

  2. Dixit S, Yadav A, Mukul PDD (2015) J Clean Prod 87:39

    Article  CAS  Google Scholar 

  3. Jiang H, Liu J, Han W (2016) Waste Manage Res 34:399

    Article  Google Scholar 

  4. U.S. EPA (2015) Advancing sustainable materials management: facts and figures. 2013. U.S. EPA, Washington, DC

    Google Scholar 

  5. Ferreira MJ, Almeida MF, Freitas F (2011) Polym Eng Sci 51:1418

    Article  CAS  Google Scholar 

  6. Senthil R, Hemalatha T, Kumar BS, Uma TS, Das BN, Sastry TP (2015) Clean Technol Environ Policy 17:187

    Article  CAS  Google Scholar 

  7. Joseph S, Ambone TS, Salvekar AV, Jaisankar SN, Saravanan P, Deenadayalan E (2015) Polym Compos. doi:10.1002/pc.23891

    Google Scholar 

  8. Katsikeas CS, Leonidou CN, Zeriti A (2016) J Acad Mark Sci. doi:10.1007/s11747-015-0470-5

    Google Scholar 

  9. Mishra S, Bharagava RN (2016) J Environ Sci Health C Environ Carcinog Ecotoxicol 34:1

    Article  CAS  Google Scholar 

  10. Hedberg YS, Lidén C (2016) Contact Derm 75:82

    Article  CAS  Google Scholar 

  11. Klemola K, Pearson J, Liesivuori J, Lindström-Seppä P (2009) J TEXT I 100

    Google Scholar 

  12. Oeko-Tex (2016)https://www.oeko-tex.com100 [06 june 2016]

  13. ISO 10993-5 (2009) Biological evaluation of medical devices—Part 5: tests for in vitro cytotoxicity. International Organization for Standardization, Geneva

    Google Scholar 

  14. Boutrand J (2012) Biocompatibility and performance of medical devices, 1st edn. Woodhead Publishing, Oxford

    Book  Google Scholar 

  15. Anselme K (2000) Biomaterials 21:667

    Article  CAS  Google Scholar 

  16. Santos RJ, Agostini DLS, Cabrera FC, Budemberg ER, Job AE (2015) Polym Compos 36:2275

    Article  CAS  Google Scholar 

  17. ASTM F619 (2014) Standard practice for extraction of medical plastics. ASTM International, West Conshohocken

    Google Scholar 

  18. Mosmann T (1983) J Immunol Methods 65:55

    Article  CAS  Google Scholar 

  19. ASTM F813-07 (2012) Standard practice for direct contact cell culture evaluation of materials for medical devices. ASTM International, West Conshohocken

    Google Scholar 

  20. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) Exp Cell Res 175:184

    Article  CAS  Google Scholar 

  21. Kobayashi H, Suguyama C, Morikawa Y, Hayashi M, Sofuni T (1995) MMS Commun 3:103

    CAS  Google Scholar 

  22. Cabeza LF, Taylor MM, Di Maio GL, Brown EM, Marmer WN, Carrió R, Celma PJ, Cot J (1998) Waste Manage 18:211

    Article  CAS  Google Scholar 

  23. Rezić I, Steffan I (2007) Microchem J 85:46

    Article  Google Scholar 

  24. Rizzi M, Cravello B, Ren F (2014) Cell Prolif 47:578

    Article  CAS  Google Scholar 

  25. Hedberg YS, Lidén C, Odnevall Wallinder I (2015) Contact Dermat 72(4):206–215

    Article  CAS  Google Scholar 

  26. DIN EN ISO 17075 (2007) Leather - Chemical tests—determination of chromium (VI) content. Technical Committee CEN/TC 289

  27. Mathiason F, Lidén C, Hedberg YS (2015) Contact Dermat 72(5):275–285

    Article  CAS  Google Scholar 

  28. Bagchi D, Stohs SJ, Downs BW, Bagchi M, Preuss HG (2002) Toxicology 180:5–22

    Article  CAS  Google Scholar 

  29. Shrivastava HY, Ravikumar T, Shanmugasundaram N, M B, Balachandran UN (2005) Free Radic Biol Med 38:58–69

    Article  CAS  Google Scholar 

  30. Hininger I, Benaraba R, Osman M, Faure H, Roussel AM, Anderson RA (2007) Free Radic Biol Med 42:1759–1765

    Article  CAS  Google Scholar 

  31. Novotnik B, Scancar J, Mila R, Filipi M, Zegura B (2016) Chemosphere 154:124–131

    Article  CAS  Google Scholar 

  32. Zangi S, Hejazi I, Seyfi J, Hejazi E, Khonakdar HA, Davachi SM (2016) Mater Sci Eng C 63:609

    Article  CAS  Google Scholar 

  33. Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V (2011) Biotechnol Adv 29:739

    Article  CAS  Google Scholar 

  34. Assender H, Bliznyuk V, Porfyrakis K (2002) Science 297:973

    Article  CAS  Google Scholar 

  35. Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D (ed) Regenerative medicine and tissue engineering—Cells and biomaterials. InTech. https://www.intechopen.com/books/regenerative-medicine-and-tissue-engineering-cells-and-biomaterials

  36. Vagaská B, Bacáková L, Filová E, Balík K (2010) Physiol Res 59:309

    Google Scholar 

  37. Deng Y, Liu X, Xu A, Wang L, Luo Z, Zheng Y, Deng F, Wei J, Tang Z, Wei S (2015) Int J Nanomed 10:1425

    CAS  Google Scholar 

  38. Rea SM, Brooks RA, Schneider A, Best SM, Bonfield W (2004) J Biomed Mater Res B Appl Biomater 70:250

    Article  Google Scholar 

  39. Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB (2004) Biomaterials 25:4699

    Article  CAS  Google Scholar 

  40. Dhawan A, Bajpayee M (2009) Cell Biol Toxicol 25:5

    Article  CAS  Google Scholar 

  41. Anderson D, Dhawan A, Laubenthal J (2013) Methods Mol Biol 1044:347

    Article  CAS  Google Scholar 

  42. Collins AR (2015) Mutagenesis 30:1

    Article  CAS  Google Scholar 

  43. Urcan E, Scherthan H, Styllou M, Haertel U, Hickel R, Reichl FX (2010) Biomaterials 31:2010

    Article  CAS  Google Scholar 

  44. Shehata M, Durner J, Eldenez A, Van Landuyt K, Styllou P, Rothmund L, Hickel R, Scherthan H, Geurtsen W, Kaina B, Carell T, Reichl FX (2013) Dent Mater 29:971

    Article  CAS  Google Scholar 

  45. Styllou M, Reichl FX, Styllou P, Urcan E, Rothmund L, Hickel R, Högg C, Scherthan H (2015) Dent Mater 31: 1335

    Article  CAS  Google Scholar 

  46. Cavalcante DGSM, Gomes AS, Reis EAP, Danna CS, Kerche - Silva LE, Yoshihara E, Job AE (2016) ‎Toxicol Ind Health. doi:10.1177/0748233716674398

    Google Scholar 

  47. Wise SS, Holmes AL, Liou L, Adam RM, Wise SJP (2016) Toxicol Appl Pharmacol 296:54

    Article  CAS  Google Scholar 

  48. Figgitt M, Newson R, Leslie IJ, Fisher J, Ingham E, Case CP (2010) Mutat Res 688:53–61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), for the financial support, and Agência Paulista de Tecnologia dos Agronegócios (APTA) for the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo E. Job.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Glossary

MBTS

2,2′-dithiobis (benzothiazole)

TMTD

Tetramethyl thiuram disulfide

ICP-OES

Inductively coupled plasma optical emission spectrometry

MTT

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium Bromide

EDTA

Ethylenediamine tetraacetic acid

DAPI

4′,6-diamidino-2-phenylindole

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcante, D.G.S.M., Gomes, A.S., Santos, R.J. et al. Composites Produced from Natural Rubber and Chrome-Tanned Leather Wastes: Evaluation of their In Vitro Toxicological Effects for Application in Footwear and Textile Industries. J Polym Environ 26, 980–988 (2018). https://doi.org/10.1007/s10924-017-1002-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1002-9

Keywords

Navigation