Skip to main content
Log in

Nondestructive Testing of a Complex Aluminium-CFRP Hybrid Structure with EMAT and Thermography

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A new concept of an aluminium-CFRP (carbon-fibre-reinforced-polymer) hybrid structure with integrated thermoplastic layer is introduced in this work. The occurring interfaces between the three materials are characterised with flash thermography and ultrasonic testing with electromagnetic acoustic transducer (EMAT). Thermography is able to detect artificial integrated defects in inner layers of the CFRP component and to characterise the bonding quality of the interface between the CFRP and the thermoplastic layer. Additionally a POD model (probability of detection) provides the smallest detectable size a90/95 of gapping defects in the CFRP with 5.184 mm diameter. This work shows that a characterisation of the deeper interface between the aluminium and the thermoplastic layer is possible despite the small and complex geometry. Furthermore the quality of this bonding can be investigated independently of the EMAT’s position. By combining thermography and EMAT the whole complex hybrid structure with its interfaces can be characterised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Verkehrsclub Deutschland. CO2 emissions in automotive, https://www.vcd.org/themen/auto-umwelt/co2-grenzwert/ (2017). Accessed 28 Feb 18

  2. Summa, J., Schwarz, M., Herrmann, H.G.: Evaluating the Severity of defects in a metal to CFRP hybrid-joint with in situ passive thermography damage monitoring. In: Proceedings 5th International Conference on Integrity, Reliability & Failure, IRF Porto, pp. 117–126 (2016)

  3. Park, H., Choi, M., Park, J., Kim, W.: A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography. Infrared Phys. Technol. 62, 124–131 (2014)

    Article  Google Scholar 

  4. Schroeder, J.A., Ahmed, T., Chaudry, B., Shepard, S.: Non-destructive testing of structural composites and adhesively bonded composite joints: pulsed thermography. Composites A 33, 1511–1517 (2002)

    Article  Google Scholar 

  5. Maierhofer, C., Myrach, P., Reischel, M., Steinfurth, H., Röllig, M., Kunert, M.: Characterizing damage in CFRP structures using flash thermography in reflection and transmission configurations. Composites B 57, 35–46 (2014)

    Article  Google Scholar 

  6. Meola, C.: Infrared Thermography: Recent Advances and Future Trends. Bentham Science, New York (2012)

    Book  Google Scholar 

  7. Howell, J.R., Pinar, M.M., Robert, S.: Thermal Radiation Heat Transfer, vol. 5. Taylor & Francis, New York (2010)

    Book  Google Scholar 

  8. Maldague, X.P.V.: Theory and Practice of Infrared Technology for Nondestructive Testing, pp. 15–32. Wiley & Sons Inc, New York (2001)

    Google Scholar 

  9. Schwarz, M., Summa, J., Herrmann, H.G.: Characterizing metal—CFRP hybrid structures by nondestructive testing methods. In: Proceedings 5th International Conference on Integrity, Reliability & Failure, IRF Porto, pp. 127–136 (2016)

  10. Thermosensorik: Operating Manual—Infrared Camera Head QWIP 384 Dualband (2009)

  11. Jian, X., Dixon, S., Edwards, R.S., Reed, J.: Coupling mechanism of electromagnetic acoustical transducers for ultrasonic generation. J. Acoust. Soc. Am. 119(5), 2693–2701 (2006)

    Article  Google Scholar 

  12. Salzburger, H.J., Niese, F., Dobmann, G.: EMAT pipe inspection with guided waves. Weld. World 56, 35–43 (2012)

    Article  Google Scholar 

  13. Luo, W., Rose, J.L.: Guided wave thickness measurement with EMATs. Insight-Non-Destr. Test. Cond. Monit. 45(11), 735–739 (2003)

    Article  Google Scholar 

  14. Petcher, P.A., Potter, M.D.G., Dixon, S.: A new electromagnetic acoustic transducer (EMAT) design for operation on rail. NDT&E Int. 65, 1–7 (2014)

    Article  Google Scholar 

  15. Petcher, P.A., Dixon, S.: Weld defect detection using PPM EMAT generated shear horizontal ultrasound. NDT&E Int. 74, 58–65 (2015)

    Article  Google Scholar 

  16. Le Crom, B., Castaings, M.: Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. Acoust. Soc. Am. 127(4), 2220–2230 (2010)

    Article  Google Scholar 

  17. Arun, K., Dhayalan, R., Balasubramaniam, K., Maxfield, B., Peres, P., Barnoncel, D.: An EMAT-based shear horizontal (SH) wave technique for adhesive bond inspection. AIP Conf. Proc. 1430(1), 82–86 (2012)

    Google Scholar 

  18. Castaings, M.: SH ultrasonic guided waves for the evaluation of interfacial adhesion. Ultrasonics 54, 1760–1775 (2014)

    Article  Google Scholar 

  19. Pérès, P., Barnoncel, D., Balasubramaniam, K., Castaings, M.: New experimental investigations of adhesive bonds with ultrasonic SH guided waves. In: 18th International Conference on Composite Materials (2011)

  20. Gao, H., Ali, S., Lopez, B.: Efficient detection of delamination in multilayered structures using ultrasonic guided wave EMATs. NDT&E Int. 43, 316–322 (2010)

    Article  Google Scholar 

  21. Huang, S., Wei, Z., Zhao, W., Wang, S.: A new omni-directional EMAT for ultrasonic Lamb wave tomography imaging of metallic plate defects. Sensors 14(2), 3458–3476 (2014)

    Article  Google Scholar 

  22. Dixon, S., Edwards, C., Palmer, S.B.: Recent developments in the characterisation of aluminium sheets using electromagnetic acoustic transducers (EMATs). Insight-Non-Destr. Test. Cond. Monit. 44, 274–278 (2002)

    Google Scholar 

  23. Edwards, R.S., Dixon, S., Jian, X.: Characterisation of defects in the railhead using ultrasonic surface waves. NDT&E Int. 39, 468–475 (2006)

    Article  Google Scholar 

  24. Edwards, R.S., Jian, X., Fan, Y., Dixon, S.: Signal enhancement of the in-plane and out-of-plane Rayleigh wave components. Appl. Phys. Lett. 87(19), 194104 (2005)

    Article  Google Scholar 

  25. Neumann E. Ultraschallprüfung von austenitischen Plattierungen, Mischnähten und austenitischen Schweißnähten. Expertverlag, vol. 377, Chap. 5 (1995)

  26. Annis, C., Gandossi, L., Martin, O.: Optimal sample size for probability of detection curves. Nucl. Eng. Des. 262, 98–105 (2013)

    Article  Google Scholar 

  27. Annis, C.: Statistical best-practices for building Probability of Detection (POD) models. R package mh1823, version 4.4.8 (2016). http://StatisticalEngineering.com/mh1823/

  28. Herter, S.: Quantitative Untersuchungen von Klebverbindungen und Hybridbauteilen mittels geführter Ultraschallwellen an geometrisch komplexen Strukturen. Universität des Saarlandes, Bachelorarbeit (2018)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding by Deutsche Forschungsgemeinschaft (Grant No. HE 7079/1-2) and also thank their colleagues from Fraunhofer IZFP Saarbrücken and their research partners from wbk at Karlsruhe Institute of Technology and LKT at TU Dortmund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schwarz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarz, M., Schwarz, M., Herter, S. et al. Nondestructive Testing of a Complex Aluminium-CFRP Hybrid Structure with EMAT and Thermography. J Nondestruct Eval 38, 35 (2019). https://doi.org/10.1007/s10921-019-0578-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-019-0578-5

Keywords

Navigation