Skip to main content
Log in

Structural, Optical and EPR Study of Mn-Doped ZnO Nanocrystals

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This paper presents the study of manganese-doped ZnO (Zn1−xMnxO) nanocrystals produced using the sol–gel method. In samples calcinated at a temperature of 873 K, we analyzed the influence of the manganese concentration on the structure and optical properties of these samples. From X-ray analysis, it could be inferred that there were no other phases in the Mn-doped samples, apart from a wurtzite phase. The lattice parameters do not change significantly with Mn concentration. c/a ratio exhibits a slight deviation when it is compared with the value of an optimal hexagonal closed-packed structure. Crystal size (Ds) was higher for Mn-doped samples, except for ZnO with 3% Mn doped. From UV–Vis measurements, band gap (Eg) values showed a blueshift (reduction in bandgap) when Mn concentration was higher than 3%. Electron paramagnetic resonance results determined that Mn ions were incorporated into the ZnO lattice in place of Zn2+, occupying a rhombic distortion of tetrahedral local symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)

    Article  ADS  Google Scholar 

  2. F. Acosta-Humánez, R. Cogollo-Pitalua, O. Almanza, J. Magn. Magn. Mater. 329, 39 (2013)

    Article  ADS  Google Scholar 

  3. H. Morkoc, M. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, 2009)

  4. A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, J. Nanopart. Res. 10, 679 (2008)

    Article  ADS  Google Scholar 

  5. H. Hosono, Thin Solid Films 515, 6000 (2007)

    Article  ADS  Google Scholar 

  6. V.M. De Almeida, A. Mesquita, A.O. De Zevallos, N.C. Mamani, P.P. Neves, X. Gratens, V.A. Chitta, W.B. Ferraz, A.C. Doriguetto, A.C.S. Sabioni, H.B. De Carvalho, J. Alloys Compd. 655, 406 (2016)

    Article  Google Scholar 

  7. M. Yuan, W. Fu, H. Yang, Q. Yu, S. Liu, Q. Zhao, Y. Sui, D. Ma, P. Sun, Y. Zhang, B. Luo, Mater. Lett. 63, 1574 (2009)

    Article  Google Scholar 

  8. V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Des. 96, 99 (2016)

    Article  Google Scholar 

  9. M. Mazhdi, J. Saydi, M. Karimi, J. Seidi, F. Mazhdi, Optik 124, 4128 (2013)

    Article  ADS  Google Scholar 

  10. F. Achouri, S. Corbel, L. Balan, K. Mozet, E. Girot, G. Medjahdi, M.B. Said, A. Ghrabi, R. Schneider, Mater. Des. 101, 309 (2016)

    Article  Google Scholar 

  11. A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011)

    Article  Google Scholar 

  12. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  13. D. Moussa, D. El-Said Bakeer, R. Awad, A.M. Abdel-Gaber, J. Phys. Conf. Ser. 869, 1 (2017)

    Article  Google Scholar 

  14. A.J. Hashim, M.S. Jaafar, A.J. Ghazai, N.M. Ahmed, Opt. Int. J. Light Electron Opt. 124, 491 (2013)

    Article  Google Scholar 

  15. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  16. M. Lorenz, R. Böttcher, S. Friedländer, A. Pöppl, D. Spemann, M. Grundmann, J. Mater. Chem. C 2, 4947 (2014)

    Article  Google Scholar 

  17. R. Böttcher, M. Lorenz, A. Pöppl, D. Spemann, M. Grundmann, J. Mater. Chem. C 3, 11918 (2015)

    Article  Google Scholar 

  18. A. Khorsand Zak, R. Yousefi, W.H.A. Majid, M.R. Muhamad, Ceram. Int. 38, 2059 (2012)

    Article  Google Scholar 

  19. Z. Zhang, F. Zhou, E.J. Lavernia, Metall. Mater. Trans. A 34, 1349 (2003)

    Article  Google Scholar 

  20. Q. Ma, X. Lv, Y. Wang, J. Chen, Opt. Mater. 60, 86 (2016)

  21. S.A. Ahmed, Results Phys. 7, 604 (2017)

    Article  ADS  Google Scholar 

  22. S.S. Turkiyilmaz, N. Güy, M. Özacar, J. Photochem. Photobiol. Chem. 341, 39 (2017)

    Article  Google Scholar 

  23. R. Bucheit, F. Acosta-Humánez, O. Almanza, Rev. Cuba. Física 33, 4 (2016)

    Google Scholar 

  24. A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, M. Miki-Yoshida, Mater. Res. 19, 33 (2016)

    Article  Google Scholar 

  25. Q. Gao, Y. Dai, C. Li, L. Yang, X. Li, C. Cui, J. Alloys Compd. 684, 669 (2016)

    Article  Google Scholar 

  26. A. Mauger, Appl. Magn. Reson. 39, 3 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) for their financial support for F. Acosta-Humánez, through the scholarships. We would also like to thank the Universidad Nacional de Colombia where the research was conducted. Additionally, the authors thank Prof. Magon from the Universidad do Sâo Paulo—Campus Sâo Carlos for the electron paramagnetic resonance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Almanza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta-Humánez, F., Montes-Vides, L. & Almanza, O. Structural, Optical and EPR Study of Mn-Doped ZnO Nanocrystals. J Low Temp Phys 195, 391–402 (2019). https://doi.org/10.1007/s10909-019-02170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02170-1

Keywords

Navigation