Skip to main content
Log in

Zero Level Perturbation of a Certain Third-Order Linear Solvable ODE with an Irregular Singularity at the Origin of Poincaré Rank 1

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We study an irregular singularity of Poincaré rank 1 at the origin of a certain third-order linear solvable homogeneous ODE. We perturb the equation by introducing a small parameter \(\varepsilon \in ({\mathbb R}_{+},0)\) (ε < 1), which causes the splitting of the irregular singularity into two finite Fuchsian singularities. We show that when the solutions of the perturbed equation contain logarithmic terms, the Stokes matrices of the initial equation are limits of the part of the monodromy matrices around the finite resonant Fuchsian singularities of the perturbed equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balser W. From divergent power series to analytic functions: theory and applications of multisummable power series, Vol. 1582. Heidelberg: Springer; 1994.

  2. Bateman H, Erdélyi A. 1953. Higher transcendental functions, Vol. 1: McGraw-Hill, New York.

  3. Duval A. Confluence procedures in the generalized hypergeometric family. J Math Sci Univ Tokyo 1998;5(4):597–625.

    MathSciNet  MATH  Google Scholar 

  4. Glutsyuk A. Stokes operators via limit monodromy of generic perturbation. J Dyn Control Syst 1999;5(1):101–135.

    Article  MathSciNet  Google Scholar 

  5. Glutsyuk A. On the monodromy group of confluenting linear equation. Moscow Math J 2005;5(1):67–90.

    MathSciNet  MATH  Google Scholar 

  6. Golubev V. Lectures on analytic theory of differential equations. Moscow: Gostekhizdat; 1950.

    MATH  Google Scholar 

  7. Horozov E, Stoyanova T. Non-integrability of some painlevé equations and dilogarithms. Regular Chaotic Dyn 2007;12:620–627.

    Article  MATH  Google Scholar 

  8. Hurtubise J, Lambert C, Rousseau C. Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of poincaré rank k. Moscow Math J 2013;14:309–338.

    MATH  Google Scholar 

  9. Ilyashenko Y, Yakovenko S. Lectures on analytic differential equations graduate studies in mathematics, Vol. 86. RI: American Mathematical Society, Providence; 2008.

  10. Iwasaki K, Kimura H, Shimomura S, Yoshida M. From Gauss to Painlevé, a modern theory of special functions aspects of mathematics, Vol. E16. Braunschweig: Friedr. Vieweg and Sohn; 1991.

  11. Kaplansky I. An introduction to differential algebra. Hermann: Publications L’institut de mathématique de l’université de Nancago; 1957.

    MATH  Google Scholar 

  12. Klimes M. Confluence of singularities of nonlinear differential equations via Borel-Laplace transformations. J Dynam Control Syst 2016;22:285–324.

    Article  MathSciNet  MATH  Google Scholar 

  13. Klimes M. 2014. Analytic classification of families of linear differential systems unfolding a resonant irregular singularity. arXiv:1301.5228.

  14. Klimes M. 2015. Confluence of singularities in hypergeometric systems. arXiv:1511.00834.

  15. Klimes M. 2017. Stokes phenomenon and confluence in non-autonomous Hamiltonian systems. arXiv:1709.09078 [math.CA].

  16. Lambert C, Rousseau C. Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank 1. Moscow Math J 2012;12(1):77–138.

    MathSciNet  MATH  Google Scholar 

  17. Lambert C, Rousseau C. Moduli space of unfolded differential linear systems with an irregular singularity of Poincaré rank 1. Moscow Math J 2013;13(3):529–550, 553-554.

    MATH  Google Scholar 

  18. Lambert C, Rousseau C. The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation. J Differential Equation 2008;244(10): 2641–2664.

    Article  MathSciNet  MATH  Google Scholar 

  19. Martinet J, Ramis J-P. Théorie de Galois différentielle et resommation. In: Tournier E, editor. Computer Algebra and Differential equations. London: Academic; 1989, pp. 117–214.

  20. Mitschi C. Differential Galois groups of confluent generalized hypergeometric equations: an approach using Stokes multipliers. Pacific J Math 1996;176:365–405.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramis J-P. Confluence et résurgence. J Fac Sci Univ Tokyo, Sect IA, Math 1989; 36(3):703–716.

    MathSciNet  MATH  Google Scholar 

  22. Ramis J-P. Séries divergentes et théories asymptotiques. Bull. Soc. Math. France 121 (1993) (suppl.) (Panoramas et Synthéses).

  23. Ramis J-P. Gevrey asymptotics and applications to holomorphic ordinary differential equations. In: Hua C and Wong R, editors. Differential Equations and Asymptotic Theory in Mathematical Physics (Series in Analysis vol 2). Singapore: World Scientific; 2004. p. 44-99.

  24. Remy P. Stokes phenomenon for single-level linear differential system: a perturbative approach. Funkcialaj Ekvacioj 2015;58:177–222.

    Article  MathSciNet  MATH  Google Scholar 

  25. Schäfke R. Confluence of several regular singular points into an irregular one. J Dynam Control Systems 1998;4(3):401–424.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sibuya Y. Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, 82. RI: American Mathematical Society, Providence; 1990.

    Google Scholar 

  27. Slavyanov S, Lay W. Special functions: a unified theory based on singularities. Oxford: Oxford University Press; 2000.

    MATH  Google Scholar 

  28. Stoyanova T. Non-integrability of the fourth painlevé equation in the Liouville - Arnold sense. Nonlinearity 2014;27:1029–1044.

    Article  MathSciNet  MATH  Google Scholar 

  29. Stoyanova T. Non-integrability of painlevé V equation in the Liouville sense and Stokes phenomenon. Adv Pure Math 2011;1:170–183.

    Article  MATH  Google Scholar 

  30. Stoyanova T. Non-integrability of painlevé VI equation in the Liouville. Nonlinearity 2009;22:2201–2230.

    Article  MathSciNet  MATH  Google Scholar 

  31. van der Put M, Singer M. Galois theory of linear differential equations, vol. 328 of Grundlehren der mathematischen Wissenshaften. Heidelberg: Springer; 2203.

    Google Scholar 

  32. Wasow W. Asymptotic expansions for ordinary differential equations. New York: Dover; 1965.

    MATH  Google Scholar 

  33. Zhang C. Confluence et phénoméne de Stokes. J Math Sci Univ Tokyo 1996;3: 91–107.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the referee for valuable suggestions and comments, which led to the simplification and clarification of the paper. The author is grateful to L. Gavrilov and E. Horozov for helpful discussions and comments.

Funding

The author was partially supported by Grant DN 02-5/2016 of the Bulgarian Fond “Scientific Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvetana Stoyanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoyanova, T. Zero Level Perturbation of a Certain Third-Order Linear Solvable ODE with an Irregular Singularity at the Origin of Poincaré Rank 1. J Dyn Control Syst 24, 511–539 (2018). https://doi.org/10.1007/s10883-018-9401-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-018-9401-3

Keywords

Mathematics Subject Classification (2010)

Navigation