Skip to main content

Advertisement

Log in

Engineered Nanomaterials as Potential Candidates for HIV Treatment: Between Opportunities and Challenges

  • ReviewPaper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanomaterials have received considerable attention due to their unique properties; they have high surface area compared to volume ratio, giving them superior chemical, optical and thermal characteristics. Nanomaterials have also both diagnostic and therapeutic applications. In this mini review, we are highlighting valuable data about human immunodeficiency virus (HIV), its relationship with cancer and its potential treatment with some nanomaterials such as silver nanoparticles (Ag NPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Adopted from UNAIDS [57]

Fig. 2

Adopted from NIAID [58]

Fig. 3

Adopted from Yarchoan and Uldrick [59]

Fig. 4

Similar content being viewed by others

References

  1. J. Takehisa, et al. (1998). Various types of HIV mixed infections in Cameroon. Virology 245, (1), 1–10.

    Article  CAS  Google Scholar 

  2. P. Piot (2006). AIDS: from crisis management to sustained strategic response. Lancet 368, (9534), 526–530.

    Article  Google Scholar 

  3. Control, C.f.D. (1987). Recommendations for prevention of HIV transmission in health-care settings. MMWR Suppl. 36, 1S–18S.

    Google Scholar 

  4. W. Rozenbaum, et al. (1988). HIV transmission by oral sex. Lancet 1, (8599), 1395.

    Article  CAS  Google Scholar 

  5. G. M. Shaw and E. Hunter (2012). HIV transmission. Cold Spring Harb. Perspect. Med. 2, a006965.

    Article  Google Scholar 

  6. S. Mahalingam, et al. (2002). The viral manipulation of the host cellular and immune environments to enhance propagation and survival: a focus on RNA viruses. J. Leukoc. Biol. 72, (3), 429–439.

    CAS  PubMed  Google Scholar 

  7. K. Balabanian, et al. (2004). CXCR7-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes. J. Immunol. 173, (12), 7150–7160.

    Article  CAS  Google Scholar 

  8. S. Y. Park, et al. (2011). Selection of an antiviral RNA aptamer against hemagglutinin of the subtype H5 avian influenza virus. Nucleic Acid Ther. 21, (6), 395–402.

    Article  CAS  Google Scholar 

  9. E. J. Platt, J. P. Durnin, and D. Kabat (2005). Kinetic factors control efficiencies of cell entry, efficacies of entry inhibitors, and mechanisms of adaptation of human immunodeficiency virus. J. Virol. 79, (7), 4347–4356.

    Article  CAS  Google Scholar 

  10. D. M. Eckert and P. S. Kim (2001). Mechanisms of viral membrane fusion and its inhibition. Annu. Rev. Biochem. 70, (1), 777–810.

    Article  CAS  Google Scholar 

  11. W. E. Johnson and J. M. Coffin (1999). Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl. Acad. Sci. 96, (18), 10254–10260.

    Article  CAS  Google Scholar 

  12. U. Scherdin, K. Rhodes, and M. Breindl (1990). Transcriptionally active genome regions are preferred targets for retrovirus integration. J. Virol. 64, (2), 907–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. A. R. Schröder, et al. (2002). HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, (4), 521–529.

    Article  Google Scholar 

  14. R. S. Mitchell, et al. (2004). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, (8), e234.

    Article  Google Scholar 

  15. J. Martin-Serrano, T. Zang, and P. D. Bieniasz (2003). Role of ESCRT-I in retroviral budding. J. Virol. 77, (8), 4794–4804.

    Article  CAS  Google Scholar 

  16. P. D. Bieniasz (2006). Late budding domains and host proteins in enveloped virus release. Virology 344, (1), 55–63.

    Article  CAS  Google Scholar 

  17. J. E. Garrus, et al. (2001). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, (1), 55–65.

    Article  CAS  Google Scholar 

  18. J. Martin-Serrano, T. Zang, and P. D. Bieniasz (2001). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, (12), 1313.

    Article  CAS  Google Scholar 

  19. T. Zhu, et al. (1993). Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261, (5125), 1179–1181.

    Article  CAS  Google Scholar 

  20. Z. Smit-McBride, et al. (1998). Gastrointestinal T lymphocytes retain high potential for cytokine responses but have severe CD4+ T-cell depletion at all stages of simian immunodeficiency virus infection compared to peripheral lymphocytes. J. Virol. 72, (8), 6646–6656.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. G. Pantaleo, et al. (1993). HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, (6418), 355.

    Article  CAS  Google Scholar 

  22. J. Oleske, R. Kapila, and M. Reichman (1986). Acquired immunodeficiency syndrome (AIDS). Jama 256, 362–366.

    Article  Google Scholar 

  23. L. Kumaranayake and C. Watts (2001). Resource allocation and priority setting of HIV/AIDS interventions: addressing the generalized epidemic in sub-Saharan Africa. J. Int. Dev. J. Dev. Stud. Assoc. 13, (4), 451–466.

    Google Scholar 

  24. Control, C.f.D. and Prevention (2001). Revised guidelines for HIV counseling, testing, and referral. MMWR Recomm. Rep. Morb. Mortal. Wkly. Rep. Recomm. Rep. 50, (RR-19), 1.

    Google Scholar 

  25. M. S. Cohen, et al. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365, (6), 493–505.

    Article  CAS  Google Scholar 

  26. I. Abdelrahman (2015). Induction of P3NS1 myeloma cell death and cell cycle arrest by simvastatin and/or γ-radiation. Asian Pac. J. Cancer Prev. 16, 7103–7110.

    Article  Google Scholar 

  27. L. S. Park, et al. (2018). Association of viral suppression with lower aids-defining and non-aids-defining cancer incidence in HIV-infected veterans: a prospective cohort study. Ann. Intern. Med. 169, (2), 87–96.

    Article  Google Scholar 

  28. R.-D. Liu, et al. (2014). Mechanism and factors that control HIV-1 transcription and latency activation. J. Zhejiang Univ. Sci. B 15, (5), 455–465.

    Article  CAS  Google Scholar 

  29. M. S. Shiels, et al. (2018). Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the united states through 2030. Ann. Intern. Med. 168, (12), 866–873.

    Article  Google Scholar 

  30. S. H. Omland, et al. (2018). Risk of skin cancer in patients with HIV: a Danish nationwide cohort study. J. Am. Acad. Dermatol. 79, (4), 689–695.

    Article  Google Scholar 

  31. S. N. Akarolo-Anthony, et al. (2014). Cancer burden among HIV-positive persons in Nigeria: preliminary findings from the Nigerian AIDS-cancer match study. Infect. Agents Cancer 9, (1), 1.

    Article  Google Scholar 

  32. N. Abdel-Tawab, D. Oraby, S. Saher, S. Ismail (2016). Understanding HIV-related vulnerability and stigma among Egyptian youth. Cairo: Population Council – Egypt Office. https://www.popline.org/node/650620.

  33. T. K. Vyas, L. Shah, and M. M. Amiji (2006). Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin. Drug Deliv. 3, (5), 613–628.

    Article  CAS  Google Scholar 

  34. J. das Neves, et al. (2010). Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv. Drug Deliv. Rev. 62, (4–5), 458–477.

    Article  CAS  Google Scholar 

  35. P. Sharma and S. Garg (2010). Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv. Drug Deliv. Rev. 62, (4–5), 491–502.

    Article  CAS  Google Scholar 

  36. R. Parboosing, et al. (2012). Nanotechnology and the treatment of HIV infection. Viruses 4, (4), 488.

    Article  CAS  Google Scholar 

  37. M.-C. Bowman, et al. (2008). Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 130, (22), 6896–6897.

    Article  CAS  Google Scholar 

  38. M. P. de Oliveira, et al. (2005). Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (−/−) CF-1 mice. Pharm. Res. 22, (11), 1898–1905.

    Article  Google Scholar 

  39. R. H. Müller, S. Gohla, and C. M. Keck (2011). State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm. 78, (1), 1–9.

    Article  Google Scholar 

  40. B. E. Rabinow (2004). Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 3, (9), 785.

    Article  CAS  Google Scholar 

  41. A. L. Pozniak, et al. (2010). Efficacy and safety of TMC278 in antiretroviral-naive HIV-1 patients: week 96 results of a phase IIb randomized trial. Aids 24, (1), 55–65.

    Article  CAS  Google Scholar 

  42. R. Schrijvers, B. A. Desimmie, and Z. Debyser (2011). Rilpivirine: a step forward in tailored HIV treatment. Lancet 378, (9787), 201–203.

    Article  Google Scholar 

  43. C. Villalonga-Barber, et al. (2008). Dendrimers as biopharmaceuticals: synthesis and properties. Curr.Top. Med. Chem. 8, (14), 1294–1309.

    Article  CAS  Google Scholar 

  44. Y. Pellequer and A. Lamprecht Nanoscale Cancer Therapeutics: Drug Delivery Concepts in Nanoscience (Pan Stanford Publishing Pte. Ltd., Singapore, 2009).

    Google Scholar 

  45. C. K. Leonard, et al. (1990). Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265, (18), 10373–10382.

    CAS  PubMed  Google Scholar 

  46. A. I. El-Batal, et al. (2018). Biogenic synthesis of copper nanoparticles by natural polysaccharides and Pleurotus ostreatus fermented fenugreek using gamma rays with antioxidant and antimicrobial potential towards some wound pathogens. Microb. Pathog. 118, 159–169.

    Article  CAS  Google Scholar 

  47. M.A. Elkodous, et al. (2018). C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment. Charact. Appl. Nanomater. 1, (2), 1–9. https://doi.org/10.24294/can.v1i2.585.

  48. K. Pal, et al. (2018). Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett. 15, 84–101.

    Article  Google Scholar 

  49. T. Thirugnanasambandan, et al. (2018). Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles. Nano Struct. Nano Objects 16, 224–233.

    Article  CAS  Google Scholar 

  50. F. M. Mosallam, et al. (2018). Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented Lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microb. Pathog. 122, 108–116.

    Article  CAS  Google Scholar 

  51. K. Pal, M. A. Elkodous, and M. L. N. M. Mohan (2018). CdS nanowires encapsulated liquid crystal in-plane switching of LCD device. J. Mater. Sci. Mater. Electron. 29, (12), 10301–10310.

    Article  CAS  Google Scholar 

  52. A. I. El-Batal, F. M. Mosallam, and G. S. El-Sayyad (2018). Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes. J. Clust. Sci. 29, (6), 1003–1015.

    Article  CAS  Google Scholar 

  53. G. S. El-Sayyad, F. M. Mosallam, and A. I. El-Batal (2018). One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv. Powder Technol. 29, (11), 2616–2625.

    Article  CAS  Google Scholar 

  54. J. L. Elechiguerra, et al. (2005). Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3, (1), 6.

    Article  Google Scholar 

  55. H. H. Lara, et al. (2011). Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. J. Nanobiotechnol. 9, (1), 38.

    Article  CAS  Google Scholar 

  56. L. Singh, H. G. Kruger, G. E. M. Maguire, T. Govender, and R. Parboosing (2017). The role of nanotechnology in the treatment of viral infections, Ther. Adv. Infect. Dis. 4, (4), 105–131. https://doi.org/10.1177/2049936117713593.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. UNAIDS (2018). http://www.unaids.org/en/resources/documents/2018/unaids-data-2018.

  58. NIAID (2018). https://www.niaid.nih.gov/research/advances-2018.

  59. R. Yarchoan, and T. S. Uldrick (2018). HIV-Associated Cancers and Related Diseases. N. Engl. J. Med. 378, 1029–1041. https://doi.org/10.1056/NEJMra1615896.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Nanotechnology Research Unit (P.I. Prof. Dr. Ahmed I. El-Batal), Drug Microbiology Lab., Drug Radiation Research Department, NCRRT, Egypt, for financing and supporting this study under the project “Nutraceuticals and Functional Foods Production by using Nano/ Biotechnological and Irradiation Processes”.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Abd Elkodous or Gharieb S. El-Sayyad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving Human Participation and/or Animals

This article does not contain any studies with human and/or animals performed by any of the authors.

Informed consent

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Elkodous, M., El-Sayyad, G.S., Nasser, H.A. et al. Engineered Nanomaterials as Potential Candidates for HIV Treatment: Between Opportunities and Challenges. J Clust Sci 30, 531–540 (2019). https://doi.org/10.1007/s10876-019-01533-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01533-8

Keywords

Navigation