Skip to main content
Log in

The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The calcium substituted nickel-zinc ferrites with the formula of CaxNi0.75−xZn0.25Fe2O4 (x = 0, 0.25, 0.5 and 0.75) have been prepared by using the chemical co-precipitation method. The X-ray diffraction (XRD) analyses reveal the results that all the samples crystallize in cubic spinel structure and the lattice constants of the samples for x = 0, 0.25, 0.50 and 0.75 are found to be 8.334, 8.348, 8.380 and 8.538 Å, respectively. The crystallite size of the samples, obtained from Debye Scherrer’s equation, varies between 12 nm and 27 nm. The scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses have been conducted to reveal and determine the morphology and stoichiometry of all the prepared CaxNi0.75−xZn0.25Fe2O4 ferrite samples. The SEM images show that the partical sizes for all the samples are at nano size in accordance with the XRD results and EDX results confirm the contents of the produced samples. The dielectric and impedance properties of the prepared ferrite samples have been investigated in the frequency range from 20 Hz to 10 MHz and in the temperature range from 350 to 700 K. The real and imaginary parts of dielectric constant, tan θ, AC and DC conductivity values decrease with increasing calcium content (except x = 0). Contrary to this behavior, real and imaginary parts of impedance increase with increasing calcium content. The general AC conductivity behavior of all samples is like semiconductor behavior. The conductivity mechanism of the sample with x = 0 is explained by the mechanism of correlated barrier hopping (CBH), while it has turned into overlapping large polaron tunneling (OLPT) mechanism for all other samples. From the relaxation time graphs obtained from the impedance data, activation energies of the grain and grain boundaries are obtained. The Nyquist plots are also presented in the temperature range of 350–700 K to determine the conductivity mechanism of the prepared samples and all the plots show only one semi-circle, which means that the dominant transmission comes from the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Smith, H.P.J. Wijn, Ferrites, Philips Research Laboratories, N. V. Philips’ Gloeilampenfabrieken, Eindhoven (1959)

  2. A. Goldmann, Modern Ferrite Technology, 2nd edn. (Springer, New York, 2010)

    Google Scholar 

  3. M. Hashim, A. Alimuddin, S. Kumar, B.H. Ali, H. Koo, R. Chung, J. Alloy. Compd. 511, 107–114 (2012)

    Article  Google Scholar 

  4. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, J. Alloy. Compd. 514, 91–96 (2012)

    Article  Google Scholar 

  5. T. Kuru, M. Kuru, S. Bağcı, J. Alloy. Compd. 753, 483–490 (2018)

    Article  Google Scholar 

  6. T. Jahanbin, M. Hashim, K.A. Mantori, J. Magn. Magn. Mater. 322, 2684–2689 (2010)

    Article  Google Scholar 

  7. M.A. Gabal, W.A. Bayoumy, Polyhedron 29, 2569–2573 (2010)

    Article  Google Scholar 

  8. K. Praveena, K. Sadhana, S. Matteppanavar, H.-Lin Liu, J. Magn. Magn. Mater. 423, 343–352 (2017)

    Article  Google Scholar 

  9. D. Paramesh, K.V. Kumar, P.V. Reddy, J. Magn. Magn. Mater. 444, 371–377 (2017)

    Article  Google Scholar 

  10. A.N. Spaldin, M. Fiebig, Science 309, 391–392 (2005)

    Article  Google Scholar 

  11. R.A. Mc Curie, Ferromagnetic Materials: Structure and Properties (Academic Press, London, 1994)

    Google Scholar 

  12. A.J. Baden Fuller, Ferrites at Microwave Frequencies (Peter Peregrinus, London, 1987)

    Book  Google Scholar 

  13. H. How, M.M. Devices, J.G. Webster, Wiley Encyclopaedia of Electrical and Electronics Engineering (Wiley, New York, 1999)

    Google Scholar 

  14. H. Zheng, W. Weng, G. Han, P. Du, J. Phys. Chem. C 117, 12966–12972 (2013)

    Article  Google Scholar 

  15. G.S. Luo, W.P. Zhou, J.D. Li, Z.Y. Zhou, G.W. Jiang, W.S. Li, S.L. Tang, Y.W. Du, J. Mater. Sci.: Mater. Electron. 28, 7259–7263 (2017)

    Google Scholar 

  16. G.S. Luo, W.P. Zhou, J.D. Li, G.W. Jiang, S.L. Tang, Y.W. Du, Trans. Nonferrous Met. Soc. China 25, 3678–3684 (2015)

    Article  Google Scholar 

  17. A.K. Singh, T.C. Goel, R.G. Mendiratta, J. Appl. Phys. 91, 6626–6629 (2002)

    Article  Google Scholar 

  18. H. Zhong, H.W. Zhang, J. Magn. Magn. Mater. 283, 247–250 (2004)

    Article  Google Scholar 

  19. A.D. Sheikh, V.L. Mathe, J. Mater. Sci. 43, 2018–2025 (2008)

    Article  Google Scholar 

  20. H.L. Ge, Z.J. Peng, C.B. Wang, Z.Q. Fu, Int. J. Mod. Phys. B 25, 3881–3892 (2011)

    Article  Google Scholar 

  21. Z. Liu, Z. Peng, X. Fu, Ceram. Int. 43, 14938–14944 (2017)

    Article  Google Scholar 

  22. M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Ceram. Int. 43, 4357–4365 (2017)

    Article  Google Scholar 

  23. T. Kuru, M. Kuru, S. Bağcı, J. Mater. Sci. Mater. Electron. 29, 17160–17169 (2018)

    Article  Google Scholar 

  24. C. Pasnicu, D. Condurache, E. Luca, Phys. Stat. Sol. 76, 145–150 (1983)

    Article  Google Scholar 

  25. E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, IEEE Trans. Magn. 36, 3962–3967 (2010)

    Article  Google Scholar 

  26. T. Vigneswari, P. Raji, J. Mol Struct. 1127, 515–521 (2017)

    Article  Google Scholar 

  27. S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Process. 23, 122–135 (2014)

    Article  Google Scholar 

  28. R. Deivakumaran, G. Sathya, S.K. Suresh Babu, L. John Berchmans, J. Mater. Sci. Mater. Electron. 28, 1726–1739 (2017)

    Article  Google Scholar 

  29. Y. Köseoğlu, E. Şentürk, V. Eyüpoğlu, T. Şaşmaz, M. Kuru, S.S. Hashim, Meena, J. Supercond. Nov. Magn. 29, 2813–2819 (2016)

    Article  Google Scholar 

  30. P. Chavan, L.R. Naik, Vacuum 152, 47–49 (2018)

    Article  Google Scholar 

  31. S.F. Mansour, M.A. Abdo, F.L. Kzar, J. Magn. Magn. Mater. 465, 176–185 (2018)

    Article  Google Scholar 

  32. M. Srivastava, R.K. Mishra, J. Singh, N. Srivastava, N.H. Kim, J.H. Lee, J. Alloy. Compd. 645, 171–177 (2015)

    Article  Google Scholar 

  33. S. Gowreesan, A. Ruban Kumar, Chin. J. Phys. 56, 1262–1272 (2018)

    Article  Google Scholar 

  34. J. Sharma, N. Sharma, J. Parashar, V.K. Saxena, D. Bhatnagar, K.B. Sharma, J. Alloy. Compd. 649, 362–367 (2015)

    Article  Google Scholar 

  35. T. Md, M. Rahman, C.V. Vargas, Ramana, J. Alloy. Compd. 617, 547–562 (2014)

    Article  Google Scholar 

  36. G. Aravind, M. Raghasudha, D. Ravinder, J. Materiomics 1, 348–356 (2015)

    Article  Google Scholar 

  37. U.R. Ghodake, N.D. Chaudhari, R.C. Kambale, J.Y. Patil, S.S. Suryavanshi, J. Magn. Magn. Mater. 407, 60–68 (2016)

    Article  Google Scholar 

  38. I. Khorchani, O. Hafef, J.J. Reinosa, A. Matoussi, J.F. Fernandez, Mater. Chem. Phys. 212, 187–195 (2018)

    Article  Google Scholar 

  39. T. Kuru, E. Şentürk, V. Eyüpoğlu, J. Supercond. Nov. Magn. 30, 647–655 (2017)

    Article  Google Scholar 

  40. B. Ramesh, S. Ramesh, R. Vijaya Kumar, M. Lakshmipathi Rao, J. Alloy. Compd. 513, 289–293 (2012)

    Article  Google Scholar 

  41. A. Azam, J. Alloy. Compd. 540, 145–153 (2012)

    Article  Google Scholar 

  42. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Appl. Phys. A 123, 1–9 (2017)

    Article  Google Scholar 

  43. R.K. Panda, D. Behera, J. Alloy. Compd. 587, 481–486 (2014)

    Article  Google Scholar 

  44. K.M. Batoo, Physica B 406, 382–387 (2011)

    Article  Google Scholar 

  45. E. Şentürk, Y. Köseoğlu, T. Şaşmaz, F. Alan, M. Tan, J. Alloy. Compd. 578, 90–95 (2013)

    Article  Google Scholar 

  46. M.A. Elkestawy, J. Alloy. Compd. 492, 616–620 (2010)

    Article  Google Scholar 

  47. I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, H.M. Khan, N. Karamat, J. Alloy. Compd. 579, 576–582 (2013)

    Article  Google Scholar 

  48. R.N. Bhowmik, M.C. Aswathi, Compos. B 160, 457–470 (2019)

    Article  Google Scholar 

  49. F.S.H. Abu-Samaha, M.I.M. Ismail, Mater. Sci. Semicond. Process. 19, 50–56 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kuru.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru, M., Şaşmaz Kuru, T. & Bağcı, S. The role of the calcium concentration effect on the structural and dielectric properties of mixed Ni–Zn ferrites. J Mater Sci: Mater Electron 30, 5438–5453 (2019). https://doi.org/10.1007/s10854-019-00837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00837-9

Navigation