Skip to main content

Advertisement

Log in

Amorphous Co–Pi anchored on CdSe/TiO2 nanowire arrays for efficient photoelectrochemical hydrogen production

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photoelectrochemical (PEC) water splitting into hydrogen and oxygen using hybridized semiconductor photoelectrodes has become a promising strategy for converting solar energy into clean and sustainable H2 fuel. Here, we report a promising hybrid photoanode constructed by electrodepositing an amorphous Co–Pi film onto semiconducting CdSe/TiO2 nanowire arrays for photoelectrochemical hydrogen production. This photoanode exhibits a high water-splitting photocurrent density, which is attributed to the broad visible light absorption and efficient charge carrier separation by the virtue of the type-II heterojunction formed between TiO2 and CdSe. Photoconversion efficiency of Co–Pi/CdSe/TiO2 and CdSe/TiO2 photoanodes increase by 3.3 and 2.1 times, compared with the pristine TiO2 photoanode. Moreover, Co–Pi/CdSe/TiO2 photoelectrode shows greatly improved PEC stability, the drop in photocurrent of Co–Pi/CdSe/TiO2 nanowire arrays photoelectrode is about 10% after 1 h illumination, because of the addition of the Co–Pi film protecting the light absorber CdSe/TiO2 from photocorrosion. The enhanced PEC performance mechanism of triple hybrid photoanode is also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  2. Maeda K, Domen K (2016) Development of novel photocatalyst and cocatalyst materials for water splitting under visible light. Bull Chem Soc Jpn 89:627–648

    Article  CAS  Google Scholar 

  3. Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal 8:2253–2276

    Article  CAS  Google Scholar 

  4. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  5. Sun J, Zhong DK, Gamelin DR (2010) Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ Sci 3:1252

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  7. Qu X, Xie D, Gao L, Cao L, Du F (2014) Synthesis and characterization of TiO2/WO3 composite nanotubes for photocatalytic applications. J Mater Sci 50:21–27

    Article  Google Scholar 

  8. Vanalakar SA, Mali SS, Pawar RC, Tarwal NL, Moholkar AV, Kim JH, Patil PS (2012) Photoelectrochemical properties of CdS sensitized ZnO nanorod arrays: effect of nanorod length. J Appl Phys 112:044302

    Article  Google Scholar 

  9. Wang G, Ling Y, Wheeler DA, George KE, Horsley K, Heske C, Zhang JZ, Li Y (2011) Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett 11:3503–3509

    Article  CAS  Google Scholar 

  10. Ye SH, He XJ, Ding LX, Pan ZW, Tong YX, Wu M, Li GR (2014) Cu2O template synthesis of high-performance PtCu alloy yolk–shell cube catalysts for direct methanol fuel cells. Chem Commun 50:12337–12340

    Article  CAS  Google Scholar 

  11. de Respinis M, Joya KS, De Groot HJM, D’Souza F, Smith WA, van de Krol R, Dam B (2015) Solar water splitting combining a BiVO4 light absorber with a Ru-based molecular cocatalyst. J Phys Chem C 119:7275–7281

    Article  Google Scholar 

  12. Luo J, Ma L, He T, Ng CF, Wang S, Sun H, Fan HJ (2012) TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J Phys Chem C 116:11956–11963

    Article  CAS  Google Scholar 

  13. Cheng C, Zhang H, Ren W, Dong W, Sun Y (2013) Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode. Nano Energy 2:779–786

    Article  CAS  Google Scholar 

  14. Chen HM, Chen CK, Liu RS, Zhang L, Zhang J, Wilkinson DP (2012) Nano-architecture and material designs for water splitting photoelectrodes. Chem Soc Rev 41:5654–5671

    Article  CAS  Google Scholar 

  15. Song X, Li W, He D, Wu H, Ke Z, Jiang C, Wang G, Xiao X (2018) The “Midas Touch” Transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/nitrogen coimplantation. Adv Energy Mater 8:1800165

    Article  Google Scholar 

  16. Li Z, Yao C, Wang F, Cai Z, Wang X (2014) Cellulose nanofiber-templated three-dimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology 25:504005

    Article  Google Scholar 

  17. Xu Z, Yin M, Sun J, Ding G, Lu L, Chang P, Chen X, Li D (2016) 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting. Nanotechnology 27:115401

    Article  Google Scholar 

  18. Chen C, Wei Y, Yuan G, Liu Q, Lu R, Huang X, Cao Y, Zhu P (2017) Synergistic effect of Si doping and heat treatments enhances the photoelectrochemical water oxidation performance of TiO2 nanorod arrays. Adv Funct Mater 27:1701575

    Article  Google Scholar 

  19. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  20. Xu M, Da P, Wu H, Zhao D, Zheng G (2012) Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett 12:1503–1508

    Article  CAS  Google Scholar 

  21. Wu N (2018) Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale 10:2679–2696

    Article  CAS  Google Scholar 

  22. Liu G, Du K, Xu J, Chen G, Gu M, Yang C, Wang K, Jakobsen H (2017) Plasmon-dominated photoelectrodes for solar water splitting. J Mater Chem A 5:4233–4253

    Article  CAS  Google Scholar 

  23. Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X, Du H, Sun XW (2012) Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photo anode decorated with Ag nanoparticles. Nanotechnology 23:235401

    Article  Google Scholar 

  24. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534

    Article  CAS  Google Scholar 

  25. Li H, Cheng C, Li X, Liu J, Guan C, Tay YY, Fan HJ (2012) Composition-graded ZnxCd1−xSe@ZnO core–shell nanowire array electrodes for photoelectrochemical hydrogen generation. J Phys Chem C 116:3802–3807

    Article  CAS  Google Scholar 

  26. Wang C, Sun L, Yun H, Li J, Lai Y, Lin C (2009) Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles. Nanotechnology 20:295601

    Article  Google Scholar 

  27. Bang JH, Kamat PV (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20:1970–1976

    Article  CAS  Google Scholar 

  28. Chen C, Ye M, Lv M, Gong C, Guo W, Lin C (2014) Ultralong rutile TiO2 nanorod arrays with large surface area for CdS/CdSe quantum dot-sensitized solar cells. Electrochim Acta 121:175–182

    Article  CAS  Google Scholar 

  29. Lee J-C, Kim TG, Choi H-J, Sung Y-M (2007) Enhanced photochemical response of TiO2/CdSe heterostructured nanowires. Cryst Growth Des 7:2588

    Article  CAS  Google Scholar 

  30. Mukherjee B, Smith YR, Subramanian V (2012) CdSe nanocrystal assemblies on anodized TiO2 nanotubes: optical, surface, and photoelectrochemical properties. J Phys Chem C 116(29):15175–15184

    Article  CAS  Google Scholar 

  31. Liu Y, Zhao L, Li M, Guo L (2014) TiO2/CdSe core-shell nanofiber film for photoelectrochemical hydrogen generation. Nanoscale 6:7397–7404

    Article  CAS  Google Scholar 

  32. Hensel J, Wang G, Li Y, Zhang JZ (2010) Synergistic effect of cdse quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10:478–483

    Article  CAS  Google Scholar 

  33. Abbasi A, Ghanbari D, Salavati-Niasari M, Hamadanian M (2016) Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J Mater Sci: Mater Electron 27:4800–4809

    CAS  Google Scholar 

  34. Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131:3838–3839

    Article  CAS  Google Scholar 

  35. Li Y, Wang R, Li H, Wei X, Feng J, Liu K, Dang Y, Zhou A (2015) Efficient and stable photoelectrochemical seawater splitting with TiO2@g-C3N4 nanorod arrays decorated by Co–Pi. J Phys Chem C 119(35):20283–20292

    Article  CAS  Google Scholar 

  36. Moniz SJA, Zhu J, Tang J (2014) 1D Co–Pi modified BiVO4/ZnO junction cascade for efficient photoelectrochemical water cleavage. Adv Energy Mater 4:1301590

    Article  Google Scholar 

  37. Seabold JA, Choi K-S (2011) Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem Mater 23:1105–1112

    Article  CAS  Google Scholar 

  38. Barroso M, Cowan AJ, Pendlebury SR, Gratzel M, Klug DR, Durrant JR (2011) The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J Am Chem Soc 133:14868–14871

    Article  CAS  Google Scholar 

  39. Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K (2013) Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Adv Mater 25:125–131

    Article  CAS  Google Scholar 

  40. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM (2011) Cobalt-phosphate (Co–Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ Sci 4:5028

    Article  CAS  Google Scholar 

  41. Liu B, Wang D, Wang L, Sun Y, Lin Y, Zhang X, Xie T (2013) Glutathione-assisted hydrothermal synthesis of CdS-decorated TiO2 nanorod arrays for quantum dot-sensitized solar cells. Electrochim Acta 113:661–667

    Article  CAS  Google Scholar 

  42. Liu B, Aydil ES (2009) Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J Am Chem Soc 131:3985–3990

    Article  CAS  Google Scholar 

  43. Erat S, Metin H, Arı M (2008) Influence of the annealing in nitrogen atmosphere on the XRD, EDX, SEM and electrical properties of chemical bath deposited CdSe thin films. Mater Chem Phys 111:114–120

    Article  CAS  Google Scholar 

  44. Luo Q, Wu Z, He J, Cao Y, Bhutto WA, Wang W, Zheng X, Li S, Lin S, Kong L, Kang J (2015) Facile synthesis of composition-tuned ZnO/ZnxCd1−xSe nanowires for photovoltaic applications. Nanoscale Res Lett 10:181

    Article  Google Scholar 

  45. Sudhagar P, Chandramohan S, Kumar RS, Sathyamoorthy R, Hong C-H, Kang YS (2011) Fabrication and charge-transfer characteristics of CdS QDs sensitized vertically grown flower-like ZnO solar cells with CdSe cosensitizers. Phys Stat Sol (a) 208:474–479

    Article  CAS  Google Scholar 

  46. Zhang G, Miao H, Wang Y, Zhang D, Fan J, Han T, Mu J, Hu X (2017) The fabrication and photoelectrocatalytic study of composite ZnSe/Au/TiO2 nanotube films. J Phys D Appl Phys 50:185102

    Article  Google Scholar 

  47. Ai G, Mo R, Li H, Zhong J (2015) Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7:6722–6728

    Article  CAS  Google Scholar 

  48. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  CAS  Google Scholar 

  49. Yu Q, Meng X, Wang T, Li P, Ye J (2015) Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Adv Funct Mater 25:2686–2692

    Article  CAS  Google Scholar 

  50. Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS (2014) Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode for photoelectrochemical water splitting. J Catal 317:126–134

    Article  CAS  Google Scholar 

  51. Ai G, Li H, Liu S, Mo R, Zhong J (2015) Solar water splitting by TiO2/CdS/Co–Pi nanowire array photoanode enhanced with Co–Pi as hole transfer relay and CdS as light absorber. Adv Funct Mater 25(35):5706–5713

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11574081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Yin, Y., Yang, W. et al. Amorphous Co–Pi anchored on CdSe/TiO2 nanowire arrays for efficient photoelectrochemical hydrogen production. J Mater Sci 54, 3284–3293 (2019). https://doi.org/10.1007/s10853-018-3079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3079-5

Keywords

Navigation