Skip to main content
Log in

The effect of grain boundary structure on sensitization behavior in a nickel-based superalloy

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work discusses the evolution of grain boundary structure during thermomechanical processing and its effect on sensitization behavior in a nickel-based superalloy. Alloy 600 was deformed to varied degrees of strain (4–25%) using hot rolling followed by annealing at 1000 °C for 10 min followed by water quenching. Structure of the grain boundary was analyzed with reference to various parameters, such as grain boundary character distribution, twin-related domains, misorientation, and triple junction distribution. Each thermomechanically processed sample was heat-treated at 650 °C for 24 h before studying its sensitization behavior. The effect of structure of the grain boundary on sensitization was assessed through double loop electrochemical potentiokinetic reactivation test and measured in terms of degree of sensitization (DOS). DOS was found to be in a direct relation with the fraction of random high-angle grain boundaries and their connectivity, while it was inversely related to the fraction of low-Σ coincidence site lattice boundaries and special triple junctions. Residual strain and the fraction of low-angle grain boundaries were found to be weakly related to DOS. We show that a simple parameter can be used to predict the combined effect of all these factors on sensitization behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Friend W (1980) Corrosion of nickel and nickel-base alloys. Wiley, New York

    Google Scholar 

  2. Smith WF (1993) Structure and properties of engineering alloys. University of Michigan, Michigan, McGraw-Hill

    Google Scholar 

  3. Jr CST, Vermilyea DA (1971) Carbide sensitization and intergranular corrosloe of nickel base alloys. Corrosion 27(9):376–381

    Article  Google Scholar 

  4. Tedmon CS, Vermilyea DA, Rosolowski JH (1971) Intergranular corrosion of austenitic stainless steel. J Electrochem Soc 118(2):192–202

    Article  CAS  Google Scholar 

  5. Airey GP, Vaia AR, Pessall N, Aspden RG (1981) Detecting grain-boundary chromium depletion in inconel 600. JOM 33(11):28–35

    Article  CAS  Google Scholar 

  6. Gao M, Wei RP (1994) Precipitation of intragranular M23C6 carbides in a nickel alloy: morphology and crystallographic feature. Scr Metall Mater 30(8):1009–1014

    Article  CAS  Google Scholar 

  7. Taylor DF, Silverman M (1980) Some effects of electrolyte composition and heat treatment on the aqueous crevice corrosion of alloy 600 and type 304 stainless steel at 288 °C. Corrosion 36(9):447–458

    Article  CAS  Google Scholar 

  8. King A, Johnson G, Engelberg D, Ludwig W, Marrow J (2008) Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321(5887):382–385

    Article  CAS  Google Scholar 

  9. Rahimi S, Engelberg D, Duff J, Marrow T (2009) In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel. J Microsc 233(3):423–431

    Article  CAS  Google Scholar 

  10. Rahimi S, Engelberg DL, Marrow TJ (2011) A new approach for DL-EPR testing of thermo-mechanically processed austenitic stainless steel. Corros Sci 53(12):4213–4222

    Article  CAS  Google Scholar 

  11. Rahimi S, Marrow T (2012) Effects of orientation, stress and exposure time on short intergranular stress corrosion crack behaviour in sensitised type 304 austenitic stainless steel. Fatigue Fract Eng Mater Struct 35(4):359–373

    Article  CAS  Google Scholar 

  12. Číhal V (1984) Intergranular corrosion of steels and alloys. Elsevier, University of Michigan, McGraw-Hill

    Google Scholar 

  13. Fontana MG (1986) Corrosion engineering. Tata McGraw-Hill Education, New York

    Google Scholar 

  14. Advani AH, Atteridge DG, Murr LE (1991) Solution annealing effects on sensitization of 316 stainless steels. Scr Metall Mater 25(10):2221–2226

    Article  CAS  Google Scholar 

  15. Watanabe Y, Kain V, Tonozuka T, Shoji T, Kondo T, Masuyama F (2000) Effect of Ce addition on the sensitization properties of stainless steels. Scr Mater 42(3):307–312

    Article  CAS  Google Scholar 

  16. Nicholas Van Warmelo M (2007) Susceptibility of 12% CR steels to sensitisation during welding of thick gauge plate. MS thesis, University of Wollongong, Australia

  17. Farahat AIZ, El-Bitar TA (2010) Effect of Nb, Ti and cold deformation on microstructure and mechanical properties of austenitic stainless steels. Mater Sci Eng A 527(16):3662–3669

    Article  Google Scholar 

  18. Lippold JC, Kiser SD, DuPont JN (2009) Welding metallurgy and weldability of nickel-base alloys. Wiley, New York

    Google Scholar 

  19. Lin P, Aust KT, Palumbo G, Erb U (1995) Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scr Metall Mater 33(9):1387–1392

    Article  CAS  Google Scholar 

  20. Shimada M, Kokawa H, Wang Z, Sato Y, Karibe I (2002) Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater 50(9):2331–2341

    Article  CAS  Google Scholar 

  21. Aust K, Erb U, Palumbo G (1994) Interface control for resistance to intergranular cracking. Mater Sci Eng A 176(1):329–334

    Article  CAS  Google Scholar 

  22. Yun Bi H, Kokawa H, Jie Wang Z, Shimada M, Sato YS (2003) Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel. Scr Mater 49(3):219–223

    Article  Google Scholar 

  23. Watanabe T (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mech 11(1):47–84

    CAS  Google Scholar 

  24. Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52(14):4067–4081

    Article  CAS  Google Scholar 

  25. Vaid A, Mittal K, Sahu S, Shekhar S (2016) Controlled evolution of coincidence site lattice related grain boundaries. Trans Indian Inst Met 69(9):1745–1753

    Article  CAS  Google Scholar 

  26. Sahu S, Yadav PC, Shekhar S (2017) Use of hot rolling for generating low deviation twins and a disconnected random boundary network in inconel 600 alloy. Metall Mater Trans A 49(2):628–643

    Article  Google Scholar 

  27. Brandon D (1966) The structure of high-angle grain boundaries. Acta Metall 14(11):1479–1484

    Article  CAS  Google Scholar 

  28. King AH, Shekhar S (2006) What does it mean to be special? The significance and application of the Brandon criterion. J Mater Sci 41(23):7675–7682. https://doi.org/10.1007/s10853-006-0665-8

    Article  CAS  Google Scholar 

  29. Ortner SR, Randle V (1989) A study of the relation between grain boundary type and sensitisation in a partially-sensitised AISI 304 stainless steel using electron back-scattering patterns. Scr Metall 23(11):1903–1908

    Article  CAS  Google Scholar 

  30. Gertsman VY, Bruemmer SM (2001) Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater 49(9):1589–1598

    Article  CAS  Google Scholar 

  31. Takehara Y, Fujiwara H, Miyamoto H (2013) “Special” to “general” transition of intergranular corrosion in Σ3{111} grain boundary with gradually changed misorientation. Corros Sci 77:171–175

    Article  CAS  Google Scholar 

  32. Sharma NK, Shekhar S (2017) Cut-off deviation for CSL boundaries in recrystallized face-centered cubic materials. Philos Mag 97(23):2004–2017

    Article  CAS  Google Scholar 

  33. Ahmedabadi PM, Kain V, Dangi BK, Samajdar I (2013) Role of grain boundary nature and residual strain in controlling sensitisation of type 304 stainless steel. Corros Sci 66:242–255

    Article  CAS  Google Scholar 

  34. Jiang J, Xu D, Xi T et al (2016) Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corros Sci 113:46–56

    Article  CAS  Google Scholar 

  35. Li S-X, He Y-N, Yu S-R, Zhang P-Y (2013) Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel. Corros Sci 66:211–216

    Article  CAS  Google Scholar 

  36. Singh R, Chowdhury SG, Ravi Kumar B, Das SK, De PK, Chattoraj I (2007) The importance of grain size relative to grain boundary character on the sensitization of metastable austenitic stainless steel. Scr Mater 57(3):185–188

    Article  CAS  Google Scholar 

  37. Rajesh Kannan P, Muthupandi V, Devakumaran K, Sridivya C, Arthi E (2018) Effect of grain size on self-healing behaviour of sensitized S304HCu stainless steel. Mater Chem Phys 207:203–211

    Article  CAS  Google Scholar 

  38. Schuh CA, Kumar M, King WE (2003) Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater 51(3):687–700

    Article  CAS  Google Scholar 

  39. Frary M, Schuh C (2005) Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos Mag 85(11):1123–1143

    Article  CAS  Google Scholar 

  40. Hu C, Xia S, Li H et al (2011) Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros Sci 53(5):1880–1886

    Article  CAS  Google Scholar 

  41. Kumar M, King WE, Schwartz AJ (2000) Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater 48(9):2081–2091

    Article  CAS  Google Scholar 

  42. Strauss BM, Putatunda SK (1990) Quantitative methods in fractography. In: Proceedings of the symposium on evaluation and techniques in fractography, Atlanta, GA, Nov. 10, 1988. No. CONF-8811253- Philadelphia, PA (US), American Society for Testing and Materials

  43. Gertsman VY, Henager CH (2003) Grain boundary junctions in microstructure generated by multiple twinning. Interface Sci 11(4):403–415

    Article  CAS  Google Scholar 

  44. Reed BW, Kumar M (2006) Mathematical methods for analyzing highly-twinned grain boundary networks. Scr Mater 54(6):1029–1033

    Article  CAS  Google Scholar 

  45. Gertsman V (2001) Coincidence site lattice theory of multicrystalline ensembles. Acta Crystallogr Sect A 57(6):649–655

    Article  CAS  Google Scholar 

  46. Reed BW, Minich RW, Rudd RE, Kumar M (2004) The structure of the cubic coincident site lattice rotation group. Acta Crystallogr Sect A 60(3):263–277

    Article  Google Scholar 

  47. Cayron C (2011) Quantification of multiple twinning in face centred cubic materials. Acta Mater 59(1):252–262

    Article  CAS  Google Scholar 

  48. Bober DB, Lind J, Mulay RP, Rupert TJ, Kumar M (2017) The formation and characterization of large twin related domains. Acta Mater 129:500–509

    Article  CAS  Google Scholar 

  49. Reed BW, Kumar M, Minich RW, Rudd RE (2008) Fracture roughness scaling and its correlation with grain boundary network structure. Acta Mater 56(13):3278–3289

    Article  CAS  Google Scholar 

  50. Lind J, Li SF, Kumar M (2016) Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials. Acta Mater 114:43–53

    Article  CAS  Google Scholar 

  51. Barr CM, Thomas S, Hart JL, Harlow W, Anber E, Taheri ML (2018) Tracking the evolution of intergranular corrosion through twin-related domains in grain boundary networks. NPJ Mater Degrad 2:14. https://doi.org/10.1038/s41529-018-0032-7

    Article  Google Scholar 

  52. Fang X, Wang W, Guo H, Qin C, Zhou B (2009) Distribution and Corrosion Behaviors of the Triple Junctions in a Grain Boundary Engineered 304 Stainless Steel. Int J Mod Phys B 23:1110–1115

    Article  CAS  Google Scholar 

  53. Demirel MC, El-Dasher BS, Adams BL, Rollett AD (2000) Studies on the accuracy of electron backscatter diffraction measurements. In: Schwartz AJ, Kumar M, Adams BL, Field DP (eds) Electron backscatter diffraction in materials science. Springer, Boston, pp 65–74

    Chapter  Google Scholar 

  54. Schwartz AJ, Kumar M, Adams BL, Field DP (2009) Electron backscatter diffraction in materials science. Springer, Boston

    Book  Google Scholar 

  55. Joham R, Sharma NK, Mondal K, Shekhar S (2017) Low temperature cross-rolling to modify grain boundary character distribution and its effect on sensitization of SS304. J Mater Process Technol 240:324–331

    Article  CAS  Google Scholar 

  56. Číhal V, Štefec R (2001) On the development of the electrochemical potentiokinetic method. Electrochim Acta 46(24):3867–3877

    Article  Google Scholar 

  57. British Standards Institution (2006) Corrosion of metals and alloys—electrochemical potentiokinetic reactivation measurement using the double loop method (based on Cihal’s Method). BS ISO 12732

  58. British Standards Institution (2003) Steels—micrographic determination of the apparent grain size. BS EN ISO 643

  59. Wu H-Y, Zhu F-J, Wang S-C, Wang W-R, Wang C-C, Chiu C-H (2012) Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J Mater Sci 47(9):3971–3981. https://doi.org/10.1007/s10853-012-6250-4

    Article  CAS  Google Scholar 

  60. Shi F, Tian PC, Jia N et al (2016) Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corros Sci 107:49–59

    Article  CAS  Google Scholar 

  61. Ahmedabadi PM, Kain V, Venkata Muralidhar K, Samajdar I (2013) On the role of residual strain in controlling sensitisation of twin-boundary engineered type 304 stainless steel. J Nucl Mater 432(1):243–251

    Article  CAS  Google Scholar 

  62. Randle V, Owen G (2006) Mechanisms of grain boundary engineering. Acta Mater 54(7):1777–1783

    Article  CAS  Google Scholar 

  63. Randle V (2001) A methodology for grain boundary plane assessment by single-section trace analysis. Scr Mater 44(12):2789–2794

    Article  CAS  Google Scholar 

  64. Cayron C (2007) ARPGE: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data. J Appl Crystallogr 40(6):1183–1188

    Article  CAS  Google Scholar 

  65. Fortier P, Miller WA, Aust KT (1997) Triple junction and grain boundary character distributions in metallic materials. Acta Mater 45(8):3459–3467

    Article  CAS  Google Scholar 

  66. Gertsman V (2001) Geometrical theory of triple junctions of CSL boundaries. Acta Crystallogr Sect A 57(4):369–377

    Article  CAS  Google Scholar 

  67. Bühler HE, Gerlach L, Greven O, Bleck W (2003) The electrochemical reactivation test (ERT) to detect the susceptibility to intergranular corrosion. Corros Sci 45(10):2325–2336

    Article  Google Scholar 

  68. Abou-Elazm A, Abdel-Karim R, Elmahallawi I, Rashad R (2009) Correlation between the degree of sensitization and stress corrosion cracking susceptibility of type 304H stainless steel. Corros Sci 51(2):203–208

    Article  CAS  Google Scholar 

  69. Palumbo G, King P, Aust K, Erb U, Lichtenberger P (1991) Grain boundary design and control for intergranular stress-corrosion resistance. Scr Metall Mater 25(8):1775–1780

    Article  CAS  Google Scholar 

  70. Lehockey EM, Brennenstuhl AM, Thompson I (2004) On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking. Corros Sci 46(10):2383–2404

    Article  CAS  Google Scholar 

  71. Ĉíhal V, Kašová I (1970) Relation between carbide precipitation and intercrystalline corrosion of stainless steels. Corros Sci 10(12):875–881

    Article  Google Scholar 

  72. Trillo EA, Beltran R, Maldonado JG et al (1995) Combined effects of deformation (strain and strain state), grain size, and carbon content on carbide precipitation and corrosion sensitization in 304 stainless steel. Mater Charact 35(2):99–112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Dr. Cyril Cayron for providing ARPGE software for TRD analysis. We also acknowledge support from Electron Microscopy Facility at Advanced Center for Materials Science, Indian Institute of Technology Kanpur for conducting OIM-related characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Shekhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, S., Sharma, N.K., Patel, S.K. et al. The effect of grain boundary structure on sensitization behavior in a nickel-based superalloy. J Mater Sci 54, 1797–1818 (2019). https://doi.org/10.1007/s10853-018-2919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2919-7

Keywords

Navigation