Skip to main content
Log in

Effect of Prestresses on Lamb Waves in a System Consisting of an Ideal Liquid Half-Space and an Elastic Layer

  • Published:
International Applied Mechanics Aims and scope

A problem is formulated for quasi-Lamb waves propagating in a prestrained elastic layer interacting with a half-space of compressible ideal fluid. The results are obtained using the three-dimensional equations of linearized theory of finite deformations for the elastic layer and the three-dimensional linearized Euler equations for the compressible ideal fluid. The problem statement and the approach are based on the general solutions of the linearized equations for elastic solid and fluid. The dispersion equations that describe the propagation of quasi-Lamb waves in hydroelastic systems over a wide frequency range are obtained. The effect of initial stresses and half-space of compressible ideal fluid and the thickness of the elastic layer on the phase velocities of quasi-Lamb modes is analyzed. The approach developed and the results obtained for wave processes allow establishing the limits of applicability of the models based on different versions of the theory of small initial deformations. The numerical results are presented in the form of graphs and are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  2. M. M. Vol’kenshtein and V. M. Levin, “Structure of a Stoneley wave at the interface between a viscous fluid and a solid,” Akust. Zh., 34, No. 4, 608–615 (1988).

    Google Scholar 

  3. A. N. Guz, General Issues, Vol. 1 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  4. A. N. Guz, Propagation Laws, Vol. 2 of the two-volume series Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).

  5. A. N. Guz, Dynamics of Compressible Viscous Fluid [in Russian], A.S.K., Kyiv (1998).

  6. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

  7. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 1: General Principles. Waves in Unbounded Bodies and Surface Waves [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

  8. A. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses, Part 2: Waves in Partially Bounded Bodies [in Russian], LAP LAMBERT Academic Publishing, Saarbrucken (2016).

    Google Scholar 

  9. A. N. Guz, An Introduction to the Dynamics of Compressible Viscous Fluid [in Russian], LAP LAMBERT Academic Publishing RU, Saarbrucken (2017).

    Google Scholar 

  10. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

  11. A. P. Zhuk, “Stoneley waves in a prestressed medium,” Prikl. Mekh., 16, No. 1, 113–116 (1980).

    MathSciNet  Google Scholar 

  12. S. Yu. Babich, A. N. Guz, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Int. Appl. Mech., 15, No. 4, 277–291 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  13. A. M. Bagno, “Wave propagation in an elastic layer interacting with a viscous liquid layer,” Int. Appl. Mech., 52, No. 2, 133–139 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. M. Bagno, “Effect of prestresses on the dispersion of quasi-Lamb waves in the system consisting of an ideal liquid layer and a compressible elastic layer,” Int. Appl. Mech., 53, No. 2, 139–148 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. M. Bagno and A. N. Guz, “Elastic waves in pre-stressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  Google Scholar 

  16. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E Int., 39, No. 7, 525–541 (2006).

    Article  Google Scholar 

  17. A. Gibson and J. Popovics, “Lamb wave basis for impact-echo method analysis,” J. Eng. Mech., 131, No. 4, 438–443 (2005).

    Article  Google Scholar 

  18. A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  19. A. N. Guz, “Elastic waves in bodies with initial (residual) stresses,” Int. Appl. Mech., 38, No. 1, 23–59 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. N. Guz, Dynamics of Compressible Viscous Fluid, Cambridge Scientific Publishers, Cambridge (2009).

    MATH  Google Scholar 

  21. A. N. Guz, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, June, 1–15 (2011).

  22. A. N. Guz, “Ultrasonic nondestructive method for stress analysis of structural members and near-surface layers of materials: Focus on Ukrainian research (review),” Int. Appl. Mech., 50, No. 3, 231–252 (2014).

    Article  ADS  Google Scholar 

  23. A. N. Guz, A. P. Zhuk, and A. M. Bagno, “Dynamics of elastic bodies, solid particles, and fluid parcels in a compressible viscous fluid (review),” Int. Appl. Mech., 52, No. 5, 449–507 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  24. K. Y. Jhang, “Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review,” Int. J. Precis. Eng. Manufact., 10, No. 1, 123–135 (2009).

    Article  Google Scholar 

  25. S. S. Kessler, S. M. Spearing, and C. Soutis, “Damage detection in composite materials using Lamb wave methods,” Smart Mater. Struct., 11, No. 2, 269–279 (2002).

    Article  ADS  Google Scholar 

  26. M. Kobayashi, S. Tang, S. Miura, K. Iwabuchi, S. Oomori, and H. Fujiki, “Ultrasonic nondestructive material evaluation method and study on texture and cross slip effects under simple and pure shear states,” Int. J. Plasticity, 19, No. 6, 771–804 (2003).

    Article  Google Scholar 

  27. K. R. Leonard, E. V. Malyarenko, and M. K. Hinders, “Ultrasonic Lamb wave tomography,” Inverse Problems, 18, No. 6, 1795–1808 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Liu and Y. Ju, “A high-efficiency nondestructive method for remote detection and quantitative evaluation of pipe wall thinning using microwaves,” NDT & E Int., 44, No. 1, 106–110 (2011).

    Article  Google Scholar 

  29. M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Lin. Mech., 42, No. 2, 310–320 (2007).

    Article  Google Scholar 

  30. C. Ramadas, K. Balasubramaniam, M. Joshi, and C. V. Krishnamurthy, “Interaction of the primary anti-symmetric Lamb mode (Ao) with symmetric delaminations: numerical and experimental studies,” Smart Mater. Struct., 18, No. 8, 1–7 (2009).

    Article  Google Scholar 

  31. N. S. Rossini, M. Dassisti, K. Y. Benyounis, and A. G. Olabi, “Methods of measuring residual stresses in components,” Materials & Design, 35, 572–588 (2012).

    Article  Google Scholar 

  32. M. Spies, “Analytical methods for modeling of ultrasonic nondestructive testing of anisotropic media,” Ultrasonics, 42, No. 1–9, 213–219 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagno.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 54, No. 5, pp. 3–19, September–October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guz, A.N., Bagno, A.M. Effect of Prestresses on Lamb Waves in a System Consisting of an Ideal Liquid Half-Space and an Elastic Layer. Int Appl Mech 54, 495–505 (2018). https://doi.org/10.1007/s10778-018-0902-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-018-0902-2

Keywords

Navigation