Skip to main content
Log in

Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Austenitic stainless steels are widely used as biomaterial and corrosion resistance is one of the most important characteristics in determining the suitability of a material for this purpose. Plasma nitriding is a surface treatment that introduces interstitial nitrogen into these steels, which improves this property as a result of the nitrided layer, whose properties depend strongly on the conditions used in the process. In this paper, the nitriding temperatures (623, 673 and 723 K) and times (3, 4 and 5 h) were investigated. The Mössbauer Spectroscopy was correlated to the corrosion results with the purpose of finding the combination of time and temperature that optimize the corrosion improvement. An alternative method of spectra analysis, which analyzes qualitatively the hyperfine magnetic field distributions, was used and showed that the nitrided layer protects against corrosion, not only because of the expanded austenite, but also, and mainly, because of the nitrides, which are formed therein, located up to a depth of 0.1 μm. Moreover, these results indicate that temperature = 673 K and time = 4 h is the most efficient combination to optimize the corrosion resistance of the samples, nitrided at 6 Torr of the 80% H2–20% N2 gas composition. They also confirm that corrosion protection increases for higher nitriding pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordji, K., Jouzeau, J.Y., Mainard, D., Payan, E., Delagoutte, J.P., Netter, P.: Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells. Biomaterials. 17, 491–500 (1996)

    Article  Google Scholar 

  2. Liu, C.L., Chu, P.K., Lin, G.Q., Qi, M.: Anti-corrosion characteristics of nitride-coated AISI 316L stainless steel coronary stents. Surf. Coat. Technol. 201, 2802–2805 (2006)

    Article  Google Scholar 

  3. De Las Heras, E., Ybarra, G., Lamas, D., Cabo, A., Dalibon, E.L., Brühl, S.P.: Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres – influence on microstructure and corrosion resistance. Surf. Coat. Technol. 313, 47–54 (2017)

    Article  Google Scholar 

  4. Borgioli, F., Galvanetto, E., Bacci, T.: Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels. Vacuum. 127, 51–60 (2016)

    Article  ADS  Google Scholar 

  5. Yang, W.J., Zhang, M., Zhao, Y.H., Shen, M.L., Lei, H., Xu, L., Xiao, J.Q., Gong, J., Yu, B.H., Sun, C.: Enhancement of mechanical property and corrosion resistance of 316L stainless steels by low temperature arc plasma nitriding. Surf. Coat. Technol. 298, 64–72 (2016)

    Article  Google Scholar 

  6. Martinavicius, A., Abrasonis, G., Scheinost, A.,.C., Danoix, R., Danoix, F., Stinville, J.C., Talut, G., Templier, C., Liedke, O., Gemming, S., Möller, W.: Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel. Acta Mater. 60, 4065–4076 (2012)

    Article  Google Scholar 

  7. Wang, J., Xiong, J., Peng, Q., Fan, H., Wang, Y., Li, G., Shen, B.: Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel. Mater. Charact. 60, 197–203 (2009)

    Article  Google Scholar 

  8. Olzon-Dionysio, M., de Souza, S.D., Basso, R.L.O., de Souza, S.: Application of Mössbauer spectroscopy to the study of corrosion resistance in NaCl solution of plasma nitrided AISI 316L stainless steel. Surf. Coat. Technol. 202, 3607–3614 (2008)

    Article  Google Scholar 

  9. de Souza, S.D., Olzon-Dionysio, M., Basso, R.L.O., de Souza, S.: Mössbauer :spectroscopy study on the corrosion resistance of plasma nitrided ASTM F138 stainless steel in chloride solution. Mater. Charact. 61, 992–999 (2010)

    Article  Google Scholar 

  10. Olzon-Dionysio, M., Campos, M., Higa, O.Z., da Cunha, T.F., de Souza, S.D.: Investigating the correlation between some of the properties of plasma nitrided AISI 316L stainless steel. Mater. Res. 16, 1052–1057 (2013)

    Article  Google Scholar 

  11. Campos, M., de Souza, S.D., Martinez, L.G., Olzon-Dionysio, M.: Study of expanded austenite formed in plasma nitrided AISI 316L samples, using synchrotron radiation diffraction. Mater. Res. 17, 1302–1308 (2014)

    Article  Google Scholar 

  12. Campos, M.: Investigation of the phases formed on the surface of the plasma nitrided AISI 316L stainless steel, Doctor thesis, UFSCar, São Carlos/SP, 2013

  13. Silva, E. H.: Influence of alternating current of plasma nitriding on the surface properties of ASTM F138 stainless steel, Master thesis. UFSCar, São Carlos/SP, 2013

  14. Campos, M., de Souza, S.D., de Souza, S., Olzon-Dionysio, M.: Improving the empirical model for plasma nitrided AISI 316L corrosion resistance based on Mössbauer spectroscopy. Hyperfine Interact. 203, 105–112 (2011)

    Article  ADS  Google Scholar 

  15. Olzon-Dionysio, M., Campos, M., Kapp, M., de Souza, S., de Souza, S.D.: Influences of plasma nitriding edge effect on properties of 316L stainless steel. Surf. Coat. Technol. 204, 3623–3628 (2010)

    Article  Google Scholar 

  16. Nagy, D.L.: Mössbauer effect: a dual method for myriad applications. Hyperfine Interact. 182, 5–13 (2008)

    Article  ADS  Google Scholar 

  17. Pagitsas, M., Sazou, D.: Current oscillations induced by chlorides during the passive–active transition of iron in a sulfuric acid solution. J. Electroanal. Chem. 471, 132–138 (1999)

    Article  Google Scholar 

  18. Ozturk, O., Williamson, D.L.: Phase and composition depth distribution analyses of low energy, high flux N implanted stainless steel. J. Appl. Phys. 77, 3839–3850 (1995)

    Article  ADS  Google Scholar 

  19. Sumiyama, K., Onodera, H., Suzuki, K., Ono, S., Kim, K.J., Gemma, K., Nishi, Y.: Structure change in Fe4N powders by mechanical milling: a new aspect and correction of our previous reports. J. Alloys Compd. 282, 158–163 (1999)

    Article  Google Scholar 

  20. Borsa, D.M., Boerma, D.O.: Phase identification of iron nitrides and iron oxy-nitrides with Mössbauer spectroscopy. Hyperfine Interact. 151, 31–48 (2003)

    Article  ADS  Google Scholar 

  21. Öztürk, O.: Microstructural and mechanical characterization of nitrogen ion implanted layer on 316L stainless steel. Nucl. Inst. Methods Phys. Res. B. 267, 1526–1530 (2009)

    Article  ADS  Google Scholar 

  22. Chen, G.M., Jaggi, N.K., Butt, J.B., Yeh, E., Schwartz, L.H.: Magnetic study on hexagonal nitrides of 3d transition metals. J. Phys. Chem. 87, 5326–5332 (1983)

    Article  Google Scholar 

  23. Firrao, D., Rosso, M., Principi, G., Frattini, R.: The influence of carbon on nitrogen substitution in iron ε -phases. J. Mater. Sci. 17, 1773–1788 (1982)

    Article  ADS  Google Scholar 

  24. Eickel, K.H., Pitsch, W.: Magnetic properties of the hexagonal Iron nitride ϵ-Fe3.2N. Phys. Status Solidi B. 39, 121–129 (1970)

    Article  ADS  Google Scholar 

  25. Jirásková, Y., Havlíček, S., Schneeweiss, O., Peřina, V., Blawert, C.: Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation. J. Magn. Magn. Mater. 234, 477–488 (2001)

    Article  ADS  Google Scholar 

  26. Wei, R., Vajo, J.J., Matossian, J.N., Wilbur, P.J., Davis, J.A., Williamson, D.L., Collins, G.A.: A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel. Surf. Coat. Technol. 83, 235–242 (1996)

    Article  Google Scholar 

  27. Moncoffre, N., Hollinger, G., Jaffrezic, H., Marest, G., Tousset, J.: Temperature influence during nitrogen implantation into steel. Nucl. Inst. Methods Phys. Res. B. 78, 177–183 (1985)

    Article  ADS  Google Scholar 

  28. Lei, M.K., Zhu, X.M.: In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Biomaterials. 22, 641–647 (2001)

    Article  Google Scholar 

  29. Fossati, A., Borgioli, F., Galvanetto, E., Bacci, T.: Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions. Corros. Sci. 48, 1513–1515 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Brazilian research funding agencies: Foundation for Research of the State of Minas Gerais (FAPEMIG) (APQ-02127-14 and APQ-02345-14), São Paulo Research Foundation (FAPESP), National Council for Scientific and Technological Development (CNPq) and Coordination for the Improvement of Higher Level -or Education- Personnel (CAPES). The authors also acknowledge the Brazilian Synchrotron Light Laboratory (LNLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Olzon-Dionysio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 16th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2018), 18-23 November 2018, Santiago de Chile, Chile

Edited by Carmen Pizarro Arriagada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olzon-Dionysio, M., Olzon-Dionysio, D., Campos, M. et al. Corrosion resistance of AISI 316L plasma nitrided at different temperatures and times. Hyperfine Interact 240, 26 (2019). https://doi.org/10.1007/s10751-019-1563-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1563-1

Keywords

Navigation