Skip to main content

Advertisement

Log in

Diverse invertebrate fauna using dry sediment as a refuge in semi-arid and temperate Australian rivers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dormant aquatic invertebrates can remain viable in riverbed sediment during dry phases, forming a source for recolonisation during wet periods. Regional differences in capacity for invertebrates to survive drying in this way are poorly understood, but may indicate regional differences in vulnerability to altered flow regimes. We compared diversity of invertebrates in dry sediment from intermittent rivers in temperate and semi-arid Australia after 4–8 weeks of drying. We predicted adaptations of semi-arid biota to severe and unpredictable drying would make dry sediment a more significant recolonisation source, with higher relative diversity when compared with temperate rivers. Emerging aquatic invertebrate assemblages were compared to those sampled in nearby pools, as a common drying refuge. Relative taxa richness in rehydrated sediments was higher in the semi-arid region (83 ± 16% of pool taxa) than the temperate (47 ± 6% of pool taxa), despite lower overall richness (24 taxa in semi-arid, 32 taxa in temperate). Semi-arid rivers had greater potential for dry riverbeds to act as a source for recolonisation, given high relative diversity and abundance in dry sediment, combined with the frequent absence of alternative refuges. However, dry riverbeds in both regions provided a significant short-term refuge for aquatic invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.

    Article  Google Scholar 

  • Acuña, V., T. Datry, J. Marshall, D. Barceló, C. N. Dahm, A. Ginebreda, G. McGregor, S. Sabater, K. Tockner & M. A. Palmer, 2014. Why should we care about temporary waterways? Nature 343: 1080–1081.

    Google Scholar 

  • Allison, S. D. & J. B. Martiny, 2008. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America 105(Suppl 1): 11512–11519. doi:10.1073/pnas.0801925105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armitage, P., P. Cranston & L. Pinder, 1995. The Chironomidae: Biology and Ecology of Non-Biting Midges. The University of Chicago Press, London.

    Book  Google Scholar 

  • ASTM, 2009. ASTM D6913–04(2009): Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, West Conshohocken, PA.

    Google Scholar 

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2014. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4.

  • Bogan, M. T., K. S. Boersma & D. A. Lytle, 2013. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshwater Biology 58: 1016–1028.

    Article  Google Scholar 

  • Boulton, A. J., 1985. A sampling device that quantitatively collects benthos in flowing or standing waters. Hydrobiologia 127: 31–39.

    Article  Google Scholar 

  • Boulton, A. J., 1989. Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. Transactions of the Royal Society of South Australia 113: 23–34.

    Google Scholar 

  • Boulton, A. J., 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48: 1173–1185.

    Article  Google Scholar 

  • Boulton, A. J. & L. N. Lloyd, 1992. Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. Regulated Rivers 7: 131–151.

    Google Scholar 

  • Boulton, A. J., E. H. Stanley, S. G. Fisher & P. S. Lake, 1992. Over-summering strategies of macroinvertebrates in intermittent streams in Australia and Arizona. In Robarts, R. D. & M. L. Bothwell (eds), Aquatic Ecosystems in Semi-arid Regions: Implications for Resource Management. Environment Canada, Saskatoon, Canada: 227–237.

    Google Scholar 

  • Boulton, A. J., F. Sheldon, & K. M. Jenkins, 2006. Natural disturbance and aquatic invertebrates in desert rivers. In: Kingsford, R. T. (ed.), Ecology of Desert Rivers. Cambridge University Press: 133–153.

  • Boulton, A. J., M. A. Brock, B. J. Robson, D. S. Ryder, J. M. Chambers & J. A. Davis, 2014. Chapter 6: Biological Processes in Running Waters Australian Freshwater Ecology: Processes and Management Second Edition. vol 136–173. Wiley-Blackwell, West Sussex

  • Brock, M. A., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218.

    Article  Google Scholar 

  • Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Article  Google Scholar 

  • Chester, E. T. & B. J. Robson, 2013. Anthropogenic refuges for freshwater biodiversity: their ecological characteristics and management. Biological Conservation 166: 64–75.

    Article  Google Scholar 

  • Covich, A. P., T. A. Crowl & F. N. Scatena, 2003. Effects of extreme low flows on freshwater shrimps in a perennial tropical stream. Freshwater Biology 48: 1199–1206.

    Article  Google Scholar 

  • CSIRO, 2008. Water availability in the Macquarie-Castlereagh. A report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Australia, 144.

  • Datry, T., R. Corti & M. Philippe, 2012. Spatial and temporal aquatic-terrestrial transitions in the temporary Albarine River, France: responses of invertebrates to experimental rewetting. Freshwater Biology 57: 716–727.

    Article  Google Scholar 

  • Datry, T., S. T. Larned, K. M. Fritz, M. T. Bogan, P. J. Wood, E. I. Meyer & A. N. Santos, 2014. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography 37: 94–104.

    Article  Google Scholar 

  • Davis, J., A. Pavlova, R. Thompson & P. Sunnucks, 2013. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19: 1970–1984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. G. Marquéz, B. Gruber, B. Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A. K. Skidmore, D. Zurell & S. Lautenbach, 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.

    Article  Google Scholar 

  • Fritz, K. M. & W. K. Dodds, 2004. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia 527: 99–112.

    Article  Google Scholar 

  • Giri, M. L., E. T. Chester & B. J. Robson, 2010. Does sampling method or microhabitat type determine patterns of macroinvertebrate assemblage structure detected across spatial scales in rivers? Marine and Freshwater Research 61: 1313–1317.

    Article  CAS  Google Scholar 

  • Hughes, D. A., 2005. Hydrological issues associated with the determination of environmental water requirements of ephemeral rivers. River Research and Applications 21: 899–908. doi:10.1002/rra.857.

    Article  Google Scholar 

  • IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Stocker, T. F., et al. (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Jenkins, K. M. & A. J. Boulton, 2003. Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84: 2708–2723.

    Article  Google Scholar 

  • Jenkins, K. M. & A. J. Boulton, 2007. Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrate responses to reduced floodplain inundation. Journal of Applied Ecology 44: 823–832.

    Article  Google Scholar 

  • Kennard, M. J., B. J. Pusey, J. D. Olden, S. J. Mackay, J. L. Stein & N. Marsh, 2010. Classification of natural flow regimes in Australia to support environmental flow management. Freshwater Biology 55: 171–193.

    Article  Google Scholar 

  • Kingsford, R. T., 2011. Conservation management of rivers and wetlands under climate change: a synthesis. Marine and Freshwater Research 62: 217–222.

    Article  CAS  Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Article  Google Scholar 

  • Lake, P. S. & N. R. Bond, 2007. Australian futures: freshwater ecosystems and human water usage. Futures 39: 288–305.

    Article  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Laliberté, E., P. Legendre & B. Shipley, 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. http://cran.r-project.org/package=FD.

  • Larned, S. T., T. Datry & C. T. Robinson, 2007. Invertebrate and microbial responses to inundation in an ephemeral river reach in New Zealand: effects of preceding dry periods. Aquatic Sciences 69: 554–567.

    Article  Google Scholar 

  • Larned, S. T., T. Datry, D. B. Arscott & K. Tockner, 2010. Emerging concepts in temporary-river ecology. Freshwater Biology 55: 717–738.

    Article  Google Scholar 

  • Leigh, C., N. Bonada, A. J. Boulton, B. Hugueny, S. T. Larned, R. Vander Vorste & T. Datry, 2016. Invertebrate assemblage responses and the dual roles of resistance and resilience to drying in intermittent rivers. Aquatic Sciences 78: 291–301.

    Article  Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in ecology & evolution 19: 94–100.

    Article  Google Scholar 

  • Marshall, J. C., F. Sheldon, M. C. Thoms & S. Choy, 2006. The macroinvertebrate fauna of an Australian dryland river: spatial and temporal patterns and environmental relationships. Marine and Freshwater Research 57: 61–74.

    Article  CAS  Google Scholar 

  • Nakagawa, S., H. Schielzeth & R. B. O’Hara, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133–142.

    Article  Google Scholar 

  • Oksanen, J., F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O’Hara, Gavin L. Simpson, Peter Solymos, M. H. H. Stevens & H. Wagner, 2013 Vegan: Community Ecology Package for R. Version 2.0-8. http://CRAN.R-project.org/package=veganright

  • Paltridge, R. M., P. L. Dostine, C. L. Humphrey & A. J. Boulton, 1997. Macroinvertebrate recolonization after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater Research 48: 633–645.

    Article  Google Scholar 

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecological Letters 9: 741–758.

    Article  Google Scholar 

  • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Robson, B., E. T. Chester & C. M. Austin, 2011. Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.

    Article  CAS  Google Scholar 

  • Robson, B., E. Chester, B. Mitchell & T. Matthews, 2013. Disturbance and the role of refuges in mediterranean climate streams. Hydrobiologia 719: 77–91.

    Article  Google Scholar 

  • Sheldon, F. & C. S. Fellows, 2010. Water quality in two Australian dryland rivers: spatial and temporal variability and the role of flow. Marine and Freshwater Research 61: 864–874.

    Article  CAS  Google Scholar 

  • Sheldon, F., S. E. Bunn, J. M. Hughes, A. H. Arthington, S. R. Balcombe & C. S. Fellows, 2010. Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Marine and Freshwater Research 61: 885–895.

    Article  CAS  Google Scholar 

  • Stanley, E. H., D. L. Buschman, A. J. Boulton, N. B. Grimm & S. G. Fisher, 1994. Invertebrate resistance and resilience to intermittency in a desert stream. American Midland Naturalist 131: 288–300.

    Article  Google Scholar 

  • Stein, J. L., M. F. Hutchison & J. A. Stein, 2012. National Environmental Stream Attributes v1.1.5. In: Australian National University (ed). 1.1.5 edn. Geoscience Australia.

  • Steward, A. L., J. C. Marshall, F. Sheldon, B. Harch, S. Choy, S. E. Bunn & K. Tockner, 2011. Terrestrial invertebrates of dry river beds are not simply subsets of riparian assemblages. Aquatic Sciences 73: 551–566.

    Article  Google Scholar 

  • Storey, R. G. & J. M. Quinn, 2013. Survival of aquatic invertebrates in dry bed sediments of intermittent streams: temperature tolerances and implications for riparian management. Freshwater Science 32: 250–266.

    Article  Google Scholar 

  • Strachan, S. R., E. T. Chester & B. J. Robson, 2015. Freshwater invertebrate life history strategies for surviving desiccation. Springer Science Reviews 3: 57–75.

    Article  Google Scholar 

  • Stubbington, R. & T. Datry, 2013. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshwater Biology 58: 1202–1220.

    Article  Google Scholar 

  • Stubbington, R., J. Gunn, S. Little, T. P. Worrall & P. J. Wood, 2016. Macroinvertebrate seedbank composition in relation to antecedent duration of drying and multiple wet-dry cycles in a temporary stream. Freshwater Biology 61: 1293–1307.

    Article  Google Scholar 

  • Tronstad, L. M., B. P. Tronstad & A. C. Benke, 2005. Invertebrate seedbanks: rehydration of soil from an unregulated river floodplain in the south-eastern U.S. Freshwater Biology 50: 646–655.

    Article  Google Scholar 

  • Tronstad, L. M., B. P. Tronstad & A. C. Benke, 2007. Aerial colonization and growth: rapid invertebrate responses to temporary aquatic habitat in a river floodplain. Journal of the North American Benthological Society 26: 460–471.

    Article  Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biomonitoring through biological traits of benthic macroinvertebrates: how to use species trait databases? Hydrobiologia 422(423): 153–162.

    Article  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  PubMed  Google Scholar 

  • Wang, Y., U. Naumann, S. T. Wright & D. I. Warton, 2012. mvabund– an R package for model-based analysis of multivariate abundance data. Methods in Ecology and Evolution 3: 471–474.

    Article  Google Scholar 

  • Warton, D. I., S. T. Wright & Y. Wang, 2012. Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution 3: 89–101.

    Article  Google Scholar 

  • Walker, B. H., 1992. Biodiversity and ecological redundancy. Conservation Biology 6: 18–23, doi: 10.1046/j.1523-1739.1992.610018.x..

    Article  Google Scholar 

  • Williams, D. D., 1977. Movements of benthos during the recolonization of temporary streams. Oikos 29: 306–312.

    Article  Google Scholar 

  • Williams, W. D., 1980. Australian Freshwater Life: the Invertebrates of Australian Inland Waters. Macmillan, South Melbourne, Victoria.

    Google Scholar 

  • Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R Springer, New York.

Download references

Acknowledgements

We thank landholders; also Bradley Clarke-Wood and Martin Forrest for field and lab assistance. This study was supported by funding from Australian Research Council Linkage Project LP100200080. The manuscript was improved by insightful comments from Rachel Blakey, Thibault Datry and anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia E. Hay.

Additional information

Handling editor: Nicholas R. Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2017_3343_MOESM1_ESM.docx

Online Resource 1 Taxonomic identification and trait references, taxa list and trait list for aquatic invertebrates from rehydrated sediment and pool samples from semi-arid and temperate regions of the Macquarie River Catchment, South-eastern Australia. Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hay, S.E., Jenkins, K.M. & Kingsford, R.T. Diverse invertebrate fauna using dry sediment as a refuge in semi-arid and temperate Australian rivers. Hydrobiologia 806, 95–109 (2018). https://doi.org/10.1007/s10750-017-3343-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3343-8

Keywords

Navigation