Skip to main content
Log in

Protective effects of crude garlic by reducing iron-mediated oxidative stress, proliferation and autophagy in rats

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

The impact of garlic, known for its antioxidant activities, on iron metabolism has been poorly investigated. The aim of this work was to study the effect of crude garlic pre-treatment on iron-mediated lipid peroxidation, proliferation and autophagy for 5 weeks. Rats were fed distilled water or garlic solution (1 g/kg body weight) by gavage for the first 3 weeks as pre-treatment and received a basal diet supplemented or not with ferrous sulfate (650 mg Fe/kg diet) for the last 2 weeks of treatment. Immunohistochemistry labeling and ultrastuctural observations were used to evaluate the iron deleterious effects in the liver. Iron supplementation induced cell proliferation predominantly in non parenchymal cells comparing to hepatocytes, but not apoptosis. In addition, iron was accumulated within the hepatic lysosomes where it triggers autophagy as evidenced by the formation of autophagic vesicles detected by LC3-II staining. It also induced morphologic alterations of the mitochondrial membranes due to increased lipid peroxidation as shown by elevated iron and malondialdehyde concentrations in serum and tissues. Garlic pre-treatment reduced iron-catalyzed lipid peroxidation by decreasing the malondialdehyde level in the liver and colon and by enhancing the status of antioxidants. In addition, garlic reduced the iron-mediated cell proliferation and autophagy by lowering iron storage in the liver and protected mitochondrial membrane. Based on these results, garlic treatment significantly prevented iron-induced oxidative stress, proliferation and autophagy at both biochemical and histological levels due to its potent free radical scavenging and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian J, Rabache M, Frangne R (1981) Techniques d’analyse nutritionnelle. In: Association pour la promotion Industrie Agriculture (ed) Techniques d’analyse et de contrôle dans les industries agro-alimentaires. Technique et documentation, Paris, pp 393–420

    Google Scholar 

  • Agarwal KC (1996) Therapeutic action of garlic constituents. Med Res Rev 16:111–124

    Article  CAS  PubMed  Google Scholar 

  • Agarwal MK, Iqbal M, Athar M (2007) Garlic oil ameliorates ferric nitrilotriacetate (Fe-NTA)-induced damage and tumor promotion: Implications for cancer prevention. Food Chem Toxicol 45:1634–1640

    Article  CAS  PubMed  Google Scholar 

  • Anoush M, Eghbal MA, Fathiazad F, Hamzeiy H, Kouzehkonani NS (2009) The protective effects of garlic extract against acetaminophen-induced oxidative stress and glutathione depletion. Pak J Biol Sci 12(10):765–771

    Article  CAS  PubMed  Google Scholar 

  • Antunes F, Cadenas E, Brunk UT (2001) Apoptosis induced by exposure to a low steady-state concentration of H2O2 is a consequence of lysosomal rupture. Biochem J 356:549–555

    Article  CAS  PubMed  Google Scholar 

  • Arivazhagan S, Balasenthil S, Nagini S (2000) Garlic and neem leaf extracts enhance hepatic glutathione and glutathione dependent enzymes during N-methyl-N’-nitro-N-nitrosoguanidine (MNNG)-induced gastric carcinogenesis in rats. Phytother Res 14(4):291–293

    Article  CAS  PubMed  Google Scholar 

  • Balasenthil S, Arivazhagan S, Ramachandran CR, Nagini S (1999) Effects of garlic on 7, 12-Dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Cancer Detect Prev 23(6):534–538

    Article  CAS  PubMed  Google Scholar 

  • Balasenthil S, Arivazhagan S, Nagini S (2000) Effect of garlic on circulatory oxidant and antioxidant status during 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis. Nutr Res 20(11):1581–1589

    Article  CAS  Google Scholar 

  • Banerjee SK, Maulik M, Mancahanda SC, Dinda AK, Gupta SK, Maulik SK (2002) Dose-dependent induction of endogenous antioxidants in rat heart by chronic administration of garlic. Life Sci 70:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Vaugelade P, Robert V, Kibangou B, Canonne-Hergaux F, Delpal S, Bureau F, Blottière H, Bouglé D (2007) Comparative capacities of the pig colon and duodenum for luminal iron absorption. Can J Physiol Pharmacol 85(2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Borch-Iohnsen B, Thorstensen K (2009) Iron distribution in the liver and duodenum during seasonal iron overload in Svalbard Reindeer. J Comp Path 141:27–40

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britton RS (1996) Metal-induced hepatotoxicity. Semin Liver Dis 16(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Brown KE, Mathahs MM, Broadhurst KA, Weydert J (2006) Chronic iron overload stimulates hepatocyte proliferation and cyclin D1 expression in rodent liver. Transl Res 148(2):55–62

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Eaton JW, Qian M (2002) Molecular bases of cellular iron toxicity. Free Radic Biol Med 32(9):833–840

    Article  CAS  PubMed  Google Scholar 

  • El Hajji H, Nkhili E, Tomao V, Dangles O (2006) Interactions of quercetin with iron and copper ions: complexation and autoxidation. Free Radic Res 40:303–320

    Article  CAS  PubMed  Google Scholar 

  • Farinati F, Cardin R, Fiorentino M, D’errico A, Grigioni W, Cecchetto A, Naccarato R (2001) Imbalance between cytoproliferation and apoptosis in hepatitis C virus related chronic liver disease. J Viral Hepat 8(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Furutani T, Hino H, Okuda M, Gondo T, Nishina S, Kitase A, Korenaga M, Xiao S-Y, Weinman SA, Lemon SM, Sakaida I, Okita K (2006) Hepatic iron overload induces hepatocellular carcinoma in transgenic mice expressing the hepatitis C virus polyprotein. Gastroenterology 130:2087–2098

    Article  CAS  PubMed  Google Scholar 

  • Gaboriau F, Laupen-Chassay C, Pasdeloup N, Pierre JL, Brissot P, Lescoat G (2005) Modulation de la prolifération cellulaire dans des cultures de cellules hépatiques de rat par le chélateur du fer O-trensox: une relation possible avec le métabolisme des polyamines. Gastroen Clin Biol 29(8–9):900

    Article  Google Scholar 

  • Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14(7):1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Campian JL, Qian M, Sun XF, Eaton JW (2009) Mitochondrial DNA damage in iron overload. J Biol Chem 284:4767–4775

    Article  CAS  PubMed  Google Scholar 

  • Garner B, Li W, Roberg K, Brunk UT (1997) On the cytoprotective role of ferritin in macrophages and its ability to enhance lysosomal stability. Free Radic Res 27(5):487–500

    Article  CAS  PubMed  Google Scholar 

  • Garner B, Roberg K, Brunk UT (1998) Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress. Free Radic Res 29(2):103–114

    Article  CAS  PubMed  Google Scholar 

  • Glei M, Klinder A, Latunde-Dada GO, Becker TW, Hermann U, Voigt K, Pool-Zobel BL (2002) Iron-overload induces oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. Mutat Res 519:151–161

    CAS  PubMed  Google Scholar 

  • Gutiérrez L, Lázaro FJ, Abadía AR, Romero MS, Quintana C, Morales MP, Patiño C, Arranz R (2006) Bioinorganic transformations of liver iron deposits observed by tissue magnetic characterisation in a rat model. J of Inorg Biochem 100:1790–1799

    Article  Google Scholar 

  • Gutiérrez L, Quintana C, Patiño C, Bueno J, Coppin H, Roth MP, Lázaro FJ (2009) Iron speciation study in Hfe knockout mice tissues: Magnetic and ultrastructural characterisation. Biochim Biophys Acta 1792(6):541–547

    PubMed  Google Scholar 

  • Hamdaoui MH, Chahed A, Ellouze-Chabchoub S, Marouani N, Ben Abid Z, Hédhili A (2005) Effect of green tea decoction on long-term iron, zinc and selenium status of rats. Ann Nutr Metab 49:118–124

    Article  CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Heath ALM, Fairweather-Tait SJ (2003) Health implications of iron overload: the role of diet and genotype. Nutr Rev 61(2):45–62

    Article  PubMed  Google Scholar 

  • Iancu TC (1992) Ferritin and hemosiderin in pathological tissues. Electron Microsc Rev 5:209–229

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Shimizu I, Lu GM, Itonaga M, Cui XZ, Okamura Y, Shono M, Honda H, Inoue S, Muramatsu M, Ito S (2003) Idoxifene and estradiol enhance antiapoptotic activity through estrogen receptor-β in cultured rat hepatocytes. Dig Dis Sci 48:570–580

    Article  CAS  PubMed  Google Scholar 

  • Cabantchik ZI, Breuer W, Zanninelli G, Cianciulli P (2005) LPI-labile plasma iron in iron overload. Best Pract Res Clin Haematol 18:277–287

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Athar M (1998) Attenuation of iron-nitrilotriacetate (Fe-NTA)-mediated renal oxidative stress, toxicity and hyperproliferative response by the prophylactic treatment of rats with garlic oil. Food Chem Toxicol 36:485–495

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4(2):151–175

    CAS  PubMed  Google Scholar 

  • Kurz T, Terman A, Brunk UT (2007) Autophagy, ageing and apoptosis: The role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462:220–230

    Article  CAS  PubMed  Google Scholar 

  • Lafay S, Gueux E, Rayssiguier Y, Mazur A, Rémésy C, Scalbert A (2005) Caffeic acid inhibits oxidative Stress and reduces hypercholesterolemia induced by iron overload in rats. Int J Vitam Nutr Res 75:119–125

    Article  CAS  PubMed  Google Scholar 

  • Le NT, Richardson DR (2002) The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim Biophys Acta 1603(1):31–46

    CAS  PubMed  Google Scholar 

  • Levine SA, Kidd PM (1996) Antioxidant adaptation. Its role in free radical pathology. A. Biocurrents division, Allergy Research Group. San Leandro, California

  • Liu Y, Shimizu I, Omoya T, Ito S, Gu XS, Zuo J (2002) Protective effect of estradiol on hepatocytic oxidative damage. World J Gastroentero 8:363–366

    CAS  Google Scholar 

  • Lukianova OA, David SS (2005) A role for iron-sulfur clusters in DNA repair. Curr Opin Chem Biol 9(2):145–151

    Article  CAS  PubMed  Google Scholar 

  • Lund EK, Wharf SG, Fairweather-Tait SJ, Johnson IT (1999) Oral ferrous sulphate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am J Clin Nutr 69:250–255

    CAS  PubMed  Google Scholar 

  • Lyoumi S, Abitbol M, Andrieu V, Henin D, Robert E, Schmitt C, Gouya L, de Verneuil H, Deybach JC, Montagutelli X, Beaumont C, Puy H (2007) Increased plasma transferrin, altered body iron distribution, and microcytic hypochromic anemia in ferrochelatase-deficient mice. Blood 109:811–818

    Article  CAS  PubMed  Google Scholar 

  • Mena P, Maynar M, Guttierez JM, Maynar J, Timon J, Campillo JE (1991) Erythorcyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int J Sports Med 12:563–566

    Article  CAS  PubMed  Google Scholar 

  • Morel I, Lescoat G, Gillard J, Pasdeloup N, Brissot P, Cillard P (1990) Kinetic evaluation of free malondialdehyde and enzyme leakage as indices of iron damage in rat hepatocyte cultures. Involvement of free radicals. Biochem Pharmacol 39:1647–1655

    Article  CAS  PubMed  Google Scholar 

  • Moridani MY, Pourahmad J, Bui H, Siraki A, O’Brien PJ (2003) Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radic Biol Med 34:243–253

    Article  CAS  PubMed  Google Scholar 

  • Nahdi A, Hammami I, Brasse-Lagnel C, Pilard N, Hamdaoui MH, Beaumont C, El May M (2010) Influence of garlic or its main active component diallyl disulfide on iron bioavailability and toxicity. Nutr Res 30:85–95

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202(2):199–211

    Article  CAS  PubMed  Google Scholar 

  • Pedraza-Chaverri J, Yam-Canul P, Chirino YI, Sánchez-González DJ, Martínez-Martínez CM, Cruz C, Medina-Campos ON (2008) Protective effects of garlic powder against potassium dichromate-induced oxidative stress and nephrotoxicity. Food Chem Toxicol 46(2):619–627

    Article  CAS  PubMed  Google Scholar 

  • Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT (2003) Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med 34(10):1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Senesse P, Meance S, Cottet V, Faivre J, Boutron-Ruault M-C (2004) High dietary iron and copper and risk of colorectal cancer: a case-control study in Burgundy, France. Nutr Cancer 49(1):66–71

    Article  CAS  PubMed  Google Scholar 

  • Rauen U, Petrat F, Sustmann R, de Groot H (2004) Iron-induced mitochondrial permeability transition in cultured hepatocytes. J Hepatol 40(4):607–615

    Article  CAS  PubMed  Google Scholar 

  • Richardson DR, Ponka P (1997) The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta 1331(1):1–40

    CAS  PubMed  Google Scholar 

  • Saravanan G, Prakash J (2004) Effect of garlic (Allium sativum) on lipid peroxidation in experimental myocardial infarction in rats. J Ethnopharmacol 94(1):155–158

    Article  CAS  PubMed  Google Scholar 

  • Sener G, Satiroglu H, Sehirli AO, Kacmaz A (2003) Protective effect of aqueous garlic extract against oxidative organ damage in a rat model of thermal injury. Life Sci 73:81–91

    Article  CAS  PubMed  Google Scholar 

  • Temme EH, Van Hoydonck PG (2002) Tea consumption and iron status. Eur J Clin Nutr 56:379–386

    Article  CAS  PubMed  Google Scholar 

  • Walter PB, Knutson MD, Paler-Martinez A, Lee S, Xu Y, Viteri FE, Ames BN (2002) Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Natl Acad Sci 99(4):2264–2269

    Article  CAS  PubMed  Google Scholar 

  • Wurzelmann JI, Silver A, Schreinemachers DM, Sandler RS, Everson RB (1996) Iron intake and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 5(7):503–507

    CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Yajun Z, Hongshan C, Baoxi S, Dengbing Y, Jianhua S, Xinshun G, Li Y, Yi C (2005) Translocation of Bax in rat hepatocytes cultured with ferric nitrilotriacetate. Life Sci 76(24):2763–2772

    Article  PubMed  Google Scholar 

  • Yu Z, Persson HL, Eaton JW, Brunk UT (2003) Intralysosomal iron: a major determinant of oxidant-induced cell death. Free Radic Biol Med 34(10):1243–1252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Tunisian Ministry of Higher Education and Scientific Research for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle El May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nahdi, A., Hammami, I., Kouidhi, W. et al. Protective effects of crude garlic by reducing iron-mediated oxidative stress, proliferation and autophagy in rats. J Mol Hist 41, 233–245 (2010). https://doi.org/10.1007/s10735-010-9283-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9283-5

Keywords

Navigation