Skip to main content

Advertisement

Log in

Attitude Towards Risk and Production Decision: an Empirical Analysis on French Private Forest Owners

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper deals with the forest owner’s attitude towards risk and the harvesting decision in several ways. First, we propose to characterize and quantify the forest owner’s attitude towards risk. Second, we analyze the determinants of the forest owner’s risk attitude. Finally, we determine the impact of the forest owner’s risk attitude on the harvesting decision. The French forest owner’s risk attitude is tackled by implementing a questionnaire, including a context-free measure borrowed from experimental economics. The determinants of the forest owner’s risk attitude and harvesting decision are estimated through a recursive bivariate ordered probit model. We show that French forest owners are characterized by a relative risk aversion coefficient close to 1 with a DARA assumption. In addition, we find that the forest owner’s risk aversion is influenced positively and significantly by the level of risk exposure, the geographical location of the forest and the fact to be a forester, and negatively by the income. Finally, we obtain that the forest owner’s risk aversion has a positive and significant impact on the harvesting decision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Due to the lack of data on market risk, we rather focus in this paper on production risk.

  2. The total number of properties in a given region is available in Darses et al. [24] and in Abildtrup et al. [1].

  3. Gestion ASsistée des Procédures Administratives relatives aux Risques naturels et technologiques: http://macommune.prim.net/gaspar/.

  4. Under €6,000; from €6,000 to €12,000; from €12,000 to €18,000; from €18,000 to €25,000; from €25,000 to €35,000; from€ 35,000 to €50,000; from €50,000 to €100,000; and over €100,000.

  5. The estimation is done using Matlab, the codes are available from the authors upon request.

  6. Regarding the measure of risk aversion, it is not possible to use the empirical counterpart of the latent variable in the harvesting equation. Indeed, it implies eight parameters to estimate in the case of nine classes of risk, which leads to an identification problem because of the lack of data.

  7. More precisely, 16 forest owners do not answer to the question on income, explaining the number of 308 observations in Table 3.

  8. The empirical distribution among the 7 classes of risk is the following: 43.2% for RA5, 19.1% for RA4, 10.5% for RA3, 5.9% for RA2, 4% for RA1, 8.7% for RN, 8.6% for RP.

  9. All the results are available from the authors upon request.

  10. Our coefficient is not directly comparable with the measures provided by Sauter et al. [51] and Musshof and Maart-Noelck [46] for foresters, i.e., the average number of safe choices realized by the participants. Then, we compare our coefficient with the ones obtained for farmers.

  11. For example, after the storm Klaus in 2009, the French government provided €415 million for an 8-year program in order to salvage and restore forest stands. The level of the financial support depended on the replanted species and was approximately €2750/ha on average [18].

References

  1. Abildtrup, J., Delacote, P., Garcia, S., Lambini, C., & Stenger, A. (2012). A forest owner survey instrument and interview guide ready for implementation. Deliverable D3.2 of the NEWFOREX research project.

  2. Agreste (2014). Enquête sur la structure de la forêt privée en 2012. Chiffres et données. 222.

  3. Alvarez, L., & Koskela, E. (2006). Does risk aversion accelerate optimal forest rotation under uncertainty? Journal of Forest Economics, 12, 171–184.

    Article  Google Scholar 

  4. Andersson, M. (2012). Assessing non-industrial private forest owners’ attitudes to risk: Do owner and property characteristics matter? Journal of Forest Economics, 18, 3–13.

    Article  Google Scholar 

  5. Andersson, M., & Gong, P. (2010). Risk preferences, risk perceptions and timber harvest decisions - an empirical study of nonindustrial private forest owners in northern Sweden. Forest Policy and Economics, 12, 330–339.

    Article  Google Scholar 

  6. Arrow, K. (1970). Essays in the theory of risk-bearing. North-Holland.

  7. Azevedo, C., Herriges, J., & Kling, C. (2003). Combining revealed and stated preferences: consistency tests and their interpretation. American Journal of Agricultural Economics, 85(3), 525–537.

    Article  Google Scholar 

  8. Battalio, R., Kagel, J., & Jiranyakul, K. (1990). Testing between alternative models of choice under uncertainty: some initial results. Journal of Risk and Uncertainty, 3(1), 25–50.

    Article  Google Scholar 

  9. Beattie, J., & Loomes, G. (1997). The impact of incentives upon risky choice experiments. Journal of Risk and Uncertainty, 14, 155–168.

    Article  Google Scholar 

  10. Binswanger, H. (1982). Empirical estimation and use of risk preferences: discussion. American Journal of Agricultural Economics, 64, 391–393.

    Article  Google Scholar 

  11. Birot, Y., & Gollier, C. (2001). Risk assessment, management and sharing in forestry, with special emphasis on wind storms. Paper presented at the 14th convocation of Academies of Engineering and Technological Sciences, Espoo, Finland.

  12. Bontems, P., & Thomas, A. (2000). Information value and risk premium in agricultural production: the case of split nitrogen application for corn. American Journal of Agricultural Economics, 82, 59–70.

    Article  Google Scholar 

  13. Bougherara, D., Gassmann, X., & Piet, L. (2011). Eliciting risk preferences: a field experiment on a sample of french farmers Paper presented at the EAAE 2011 International Congress, Zurich, Switzerland.

  14. Brunette, M., Cabantous, L., Couture, S., & Stenger, A. (2009). Assurance, intervention publique et ambiguïté: une étude expérimentale auprès de propriétaires vés . Économie et Prévision, 190-191(4-5), 123–134.

    Article  Google Scholar 

  15. Brunette, M., Cabantous, L., Couture, S., & Stenger, A. (2013). The impact of governmental assistance on insurance demand under ambiguity : a theoretical model and an experimental test. Theory and Decision, 75, 153–174.

    Article  Google Scholar 

  16. Brunette, M., & Couture, S. (2017). Is forest insurance a relevant vector to induce adaptation efforts to climate change? Forthcoming in Annals of Forest Science.

  17. Brunette, M., Couture, S., & Laye, J. (2015). Optimizing forest management under storm risk with Markov decision process model. Journal of Environmental Economics and Policy, 4(2), 141–163.

    Article  Google Scholar 

  18. Brunette, M., Holecy, J., Sedliak, M., Tucek, J., & Hanewinkel, M. (2015). An actuarial model of forest insurance against multiple natural hazards in fir (abies alba mill.) stands in Slovakia. Forest Policy and Economics, 55, 46–57.

    Article  Google Scholar 

  19. Cameron, A. C., & Trivedi, P.K. (2010). Microeconometrics Using Stata, Revised Edition. Rev. ed. College Station: Stata Press.

    Google Scholar 

  20. Clarke, H., & Reed, W. (1989). The trre-cutting problem in a stochastic environment: the case of age-dependent growth. Journal of Economic Dynamics and Controls, 13, 569–595.

    Article  Google Scholar 

  21. Conway, C., Amacher, G., Sullivan, S., & Wear, D. (2003). Decisions non-industrial forest landowners make: an empirical examination. Journal of Forest Economics, 9(3), 181– 203.

    Article  Google Scholar 

  22. Couture, S., & Reynaud, A. (2008). Multi-stand forest management under a climatic risk: do time and risk preferences matter? Environmental Modelling and Assessment, 13, 181–193.

    Article  Google Scholar 

  23. Cox, J., & Harrison, G. (2008). Risk aversion in experiments, (p. 12). Bingley: Emerald, Research in Experimental Economics.

    Google Scholar 

  24. Darses, O., Garcia, S., & Stenger, A. (2012). Drivers of cooperation for private and public goods provision: evidence from a national survey on french private forest owners. Paper presented at the annual congress of the European Association of Environmental and Resource Economists, Prague.

  25. Davidson, R., & MacKinnon, J. (1993). Eliciting risk preferences: when is simple better? Estimation and inference in econometrics. Oxford University Press.

  26. Dennis, D. F. (1990). A probit analysis of the harvest decision using pooled time-series and cross-sectional data. Journal of Environmental Economics and Management, 18(2), 176–187.

    Article  Google Scholar 

  27. Eckel, C., & Grossman, P. (2008). Forecasting risk attitudes: an experimental study using actual and forecast gamble choices. Journal of Economic Behavior and Organization, 68(1), 1– 7.

    Article  Google Scholar 

  28. Eswaran, M., & Kotwal, A. (1990). Implications of credit constraints for risk behaviour in less developed economies. Oxford Economic Papers, 42, 473–482.

    Article  Google Scholar 

  29. Fuhrer, J., Beniston, M., Fischlin, A., Frei, C., Goyette, S., Jasper, K., & Pfister, C. (2006). Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change, 79, 79–102.

    Article  CAS  Google Scholar 

  30. Galarza, F. (2009). Choices under risk in rural Peru. Working Paper MPRA, 17708, 54.

    Google Scholar 

  31. Garcia, S., Kéré, N. E., & Stenger, A. (2014). Econometric analysis of social interactions in the production decisions of private forest owners. European Review of Agricultural Economics, 41(2), 177–198.

    Article  Google Scholar 

  32. Gollier, C. (2001). The economics of risk and time. Cambridge: The MIT Press.

    Google Scholar 

  33. Gong, P., & Löfgren, K. (2003). Risk-aversion and the short-run supply of timber. Forest Science, 49(5), 647–656.

    Google Scholar 

  34. Guiso, L., & Paiella, M. (2006). The role of risk aversion in predicting individual behavior. In Chiappori, P. A., & Gollier, C. (Eds.), Insurance: theoretical analysis and policy implications. Cambridge: MIT Press.

  35. Hershey, J., & Schoemaker, P. (1990). Risk taking and problem context in the domain of losses: an expected utility analysis. Journal of Risk and Insurance, 47(1), 111–132.

    Article  Google Scholar 

  36. Holt, C., & Laury, S. (2002). Risk aversion and incentive effects. The American Economic Review, 92(5), 1644–1655.

    Article  Google Scholar 

  37. Hyberg, B., & Holthausen, D. (1989). The behavior of nonindustrial private forest owners. Canadian Journal of Forest Research, 15, 1014–1023.

    Article  Google Scholar 

  38. IGN (2012). La forêt en chiffres et en cartes. Institut national de l’information géographique et forestière.

  39. Kangas, J. (1994). Incorporating risk attitude into comparison of reforestation alternatives. Scandinavian Journal of Forest Research, 9, 297–304.

    Article  Google Scholar 

  40. Koskela, E. (1989). Forest taxation and timber supply under price uncertainty: perfect capital markets. Forest Science, 35, 137–159.

    Google Scholar 

  41. Lidestav, G., & Ekström, M. (2000). Introducing gender in studies on management behaviour among non-industrial private forest owners. Scandinavian Journal of Forest Research, 15(3), 378–386.

    Article  Google Scholar 

  42. Lien, G., Størdal, S, & Baardsen, S (2007). Technical efficiency in timber production and effects of other income sources. Small-scale Forestry, 6(1), 12.

    Article  Google Scholar 

  43. Lien, G., Størdal, S., Hardaker, J, & Asheim, L (2007). Risk aversion and optimal forest replanting: a stochastic efficiency study. European Journal of Operational Research, 181, 1584–1592.

    Article  Google Scholar 

  44. Lobianco, A., Delacote, P., Caurla, S., & Barkaoui, A. (2015). Accounting for active management and risk attitude in forest sector models: an impact study on french forests. Environmental Modeling and Assessment, doi:10.1007/s10666-015-9483-1.

  45. Lönnstedt, L., & Svensson, J. (2000). Non-industrial private forest owner’s risk preferences. Scandinavian Journal of Forest Research, 15(6), 651–660.

    Article  Google Scholar 

  46. Musshof, O., & Maart-Noelck, S. (2014). An experimental analysis of the behavior of forestry decision-makers - the example of timing in sales decisions. Forest Policy and Economics, 41, 31–39.

    Article  Google Scholar 

  47. Petucco, C., Abildtrup, J., & Stenger, A. (2015). Influences of nonindustrial private forest landowners’ management priorities on the timber harvest decision—a case study in France. Journal of Forest Economics, 21(3), 152–166.

    Article  Google Scholar 

  48. Provencher, B. (1997). Structural versus reduced-form estimation of optimal stopping problems. American Journal of Agricultural Economics, 79(2), 357–368.

    Article  Google Scholar 

  49. Reynaud, A., & Couture, S. (2012). Stability of risk preference measures: results from a field experiment on french farmers. Theory and Decision, 73, 203–221.

    Article  Google Scholar 

  50. Sajaia, Z. (2008). Maximum likelihood estimation of a bivariate ordered probit model: implementation and monte carlo simulations. The Stata Journal, 4, 282–289.

    Google Scholar 

  51. Sauter, P., Musshoff, O., Mohring, B., & Wilhelm, S. (2016). Faustmann vs. real options theory - an experimental investigation of foresters’ harvesting decisions. Journal of Forest Economics, 24, 1–20.

    Article  Google Scholar 

  52. Schelhaas, M., Nabuurs, G., & Schuck, A. (2003). Natural disturbances in the european forests in the 19th and 20th centuries. Global Change Biology, 9, 1620–1633.

    Article  Google Scholar 

  53. Spittlehouse, D., & Stewart, R. (2003). Adaptation to climate change in forest management. BC Journal of Ecosystems Management, 4, 1–11.

    Google Scholar 

  54. Størdal, S., Lien, G., & Baardsen, S (2008). Analyzing determinants of forest owners’ decision-making using a sample selection framework. Journal of Forest Economics, 14, 159–176.

    Article  Google Scholar 

  55. Thürig, E., Palosuo, T., Bucher, J., & Kaufmann, E. (2005). The impact of windthrow on carbon sequestration in Switzerland: a model-based assessment. Forest Ecology and Management, 210, 337–350.

    Article  Google Scholar 

  56. Uusivuori, J. (2002). Non-constant risk attitudes and timber harvesting. Forest Science, 48, 459–470.

    Google Scholar 

  57. Greene, W.H., & David A.H. (2010). Modeling ordered choices: a primer. Cambridge University Press.

  58. Wik, M., Kebede, T., Bergland, O., & Holden, S. (2004). On the measurement of risk aversion from experimental data. Applied Economics, 36(21), 2443–2451.

    Article  Google Scholar 

  59. Williams, D., & Liebhold, A. (1995). Herbivorous insects and global change: potential changes in the spatial distribution of forest defoliator outbreaks. Journal of Biogeography, 22, 665–671.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the European project Newforex, the National Institute of Geographic and Forest Information (IGN), and Région Lorraine that funded the survey. The UMR Economie Forestière is supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Finally, this work has benefited from the support of the Agence Nationale de la Recherche of the French government, through the program “Investissements d’avenir” (ANR-10-LABX-14-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Nazindigouba Kéré.

Appendix: Maximum likelihood estimation

Appendix: Maximum likelihood estimation

Following Sajaia [50], we show that the probability that y 1i = j and y 2i = 1 or 0:

$$\begin{array}{@{}rcl@{}} \begin{array}{ll} Pr(y_{1i}\,=\,j, y_{2i}\,=\,0) &\,=\, Pr(y_{1i}^{*} \!<\!c_{j}, y_{2i}^{*} \!<\!0) \!\\&-\! Pr(y_{1i}^{*} \!<\!c_{j-1}, y_{2i}^{*} \!<\!0) \end{array} \end{array} $$

and

$$ \begin{array}{lll} Pr(y_{1i}\,=\,j, y_{2i}\,=\,1) &=& Pr(y_{1i}^{*} <c_{j}) - Pr(y_{1i}^{*} <c_{j-1}) \\&&- Pr(y_{1i}^{*} <c_{j}, y_{2i}^{*} < 0)\\ & &+ Pr(y_{1i}^{*} <c_{j-1}, y_{2i}^{*} < 0) \end{array} $$

The system of Eq. 1 can be estimated by the maximum likelihood method. Indeed, we assume that (𝜖 1i ,𝜖 2i ) ∼ N(0, Ω) with \( {\Omega }= \left (\begin {array}{cc} 1 & \rho \\ \rho & 1 \end {array} \right )\); thus, we get:

$$\begin{array}{@{}rcl@{}} \begin{array}{lll} Pr(y_{1i}=j, y_{2i}=0) &=& Pr(\epsilon_{1i} <c_{j} - X_{1i}^{\prime} \beta_{1}, \gamma \epsilon_{1i} + \epsilon_{2i} \\&&\qquad\quad- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2} )\\ & & Pr(\epsilon_{1i} \!\!<c_{j-1} \,-\, X_{1i}^{\prime} \beta_{1}, \gamma \epsilon_{1i} \,+\, \epsilon_{2i} \\&&\qquad\quad- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2} ) \end{array} \end{array} $$

Given that \( \left (\begin {array}{cc} \!1\! & \!0\! \\ \!\gamma \! & \!1\! \end {array} \right ) \left (\begin {array}{c} \!\epsilon _{1i\!} \\ \!\epsilon _{2i}\! \end {array} \right )\!\!\! \sim \!\! N\! \left (0, \left [ \begin {array}{cc} 1 & \gamma \,+\, \rho \\ \gamma \,+\, \rho & \gamma ^{2} \,+\, 2 \gamma \rho \,+\, 1 \end {array} \right ] \right )\) we have:

$$ \begin{array}{lll} Pr(y_{1i}\,=\,j, y_{2i}\,=\,0) &\,=\,& {\Phi}_{2}(c_{j} \,-\, X_{1i}^{\prime} \beta_{1}, (\!- \gamma X_{1i}^{\prime} \beta_{1} \,-\, X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho} )\\ & & \!\!\!- {\Phi}_{2}(c_{j-1} \,-\, X_{1i}^{\prime} \beta_{1}, (\!- \gamma X_{1i}^{\prime} \beta_{1} \,-\, X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho}) \end{array} $$

Similarly, we obtain:

$$ \begin{array}{lll} Pr(y_{1i}\,=\,j, y_{2i}\,=\,1) &\,=\,& {\Phi}(c_{j} \,-\, X_{1i}^{\prime} \beta_{1}) \,-\, {\Phi}(c_{j-1} \,-\, X_{1i}^{\prime} \beta_{1}) \\&&\!\!\!- {\Phi}_{2}(c_{j} \,-\, X_{1i}^{\prime} \beta_{1}, (- \gamma X_{1i}^{\prime} \beta_{1} \,-\, X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho} )\\ & &\! \!\!+ {\Phi}_{2}(c_{j-1} \,-\, X_{1i}^{\prime} \beta_{1}, (- \gamma X_{1i}^{\prime} \beta_{1} \,-\, X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho}) \end{array} $$

with \(\tilde {\rho } = \gamma + \rho \), ζ = (γ 2 + 2γρ + 1)−1/2 and Φ and Φ2 the univariate and bivariate standard cumulative distribution functions, respectively. If j = 1, then the probabilities above shrink to:

$$ \begin{array}{lll} Pr(y_{1i}\,=\,j, y_{2i}\,=\,0) &\,=\,& {\Phi}_{2}(c_{j} \,-\, X_{1i}^{\prime} \beta_{1}, (- \gamma X_{1i}^{\prime} \beta_{1} \,-\, X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho} ) \\ Pr(y_{1i}\,=\,j, y_{2i}\,=\,1) &\,=\,& {\Phi}(c_{j} \,-\, X_{1i}^{\prime} \beta_{1}) \,-\, {\Phi}_{2}(c_{j} \,-\, X_{1i}^{\prime} \beta_{1}, (- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho} ) \end{array} $$

If j = J, then the probabilities above shrink to:

$$ \begin{array}{lll} Pr(y_{1i}=J, y_{2i}=0) &=& {\Phi}((- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2})\zeta) \\&&- {\Phi}_{2}(c_{j-1} - X_{1i}^{\prime} \beta_{1}, (- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho} ) \\ Pr(y_{1i}=J, y_{2i}=1) &=& 1- {\Phi}(c_{j-1} - X_{1i}^{\prime} \beta_{1}) \\&&- {\Phi}(- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2})\zeta) +\\ & & {\Phi}_{2}(c_{j-1} - X_{1i}^{\prime} \beta_{1}, (- \gamma X_{1i}^{\prime} \beta_{1} - X_{2i}^{\prime} \beta_{2})\zeta, \tilde{\rho} ) \end{array} $$

If we assume that the observations are independent, the log-likelihood function can be written as follows:

$$ \ln\ L= \sum\limits_{i=1}^{N} \sum\limits_{k=1}^{K} \sum\limits_{j=1}^{J} I (y_{1i}=j, y_{2i}=k)\ \ln Pr(y_{1i}=j, y_{2i}=k) $$

The maximum weighted likelihood estimator can be written as:

$$ \ln\ L=\sum\limits_{i=1}^{N} \sum\limits_{k=1}^{K}\sum\limits_{j=1}^{J} w_{i} \ I (y_{1i}=j, y_{2i}=k)\ \ln Pr(y_{1i}=j, y_{2i}=k) $$

where w is the weighting vector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunette, M., Foncel, J. & Kéré, E. Attitude Towards Risk and Production Decision: an Empirical Analysis on French Private Forest Owners. Environ Model Assess 22, 563–576 (2017). https://doi.org/10.1007/s10666-017-9570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9570-6

Keywords

Navigation