Skip to main content

Advertisement

Log in

HER-targeted tyrosine kinase inhibitors enhance response to trastuzumab and pertuzumab in HER2-positive breast cancer

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Despite trastuzumab and pertuzumab improving outcome for patients with HER2-positive metastatic breast cancer, the disease remains fatal for the majority of patients. This study evaluated the anti-proliferative effects of adding anti-HER2 tyrosine kinase inhibitors (TKIs) to trastuzumab and pertuzumab in HER2-positive breast cancer cells. Afatinib was tested alone and in combination with trastuzumab in HER2-positive breast cancer cell lines. TKIs (lapatinib, neratinib, afatinib) combined with trastuzumab and/or pertuzumab were tested in 3 cell lines, with/without amphiregulin and heregulin-1β. Seven of 11 HER2-positive cell lines tested were sensitive to afatinib (IC50 < 80 nM). Afatinib plus trastuzumab produced synergistic growth inhibition in eight cell lines. In trastuzumab-sensitive SKBR3 cells, the TKIs enhanced response to trastuzumab. Pertuzumab alone did not inhibit growth and did not enhance trastuzumab-induced growth inhibition or antibody-dependent cellular cytotoxicity. Pertuzumab enhanced response to trastuzumab when combined with lapatinib but not neratinib or afatinib. In two trastuzumab-resistant cell lines, the TKIs inhibited growth but adding trastuzumab and/or pertuzumab did not improve response compared to TKIs alone. Amphiregulin plus heregulin-1β stimulated proliferation of SKBR3 and MDA-MB-453 cells. In the presence of the growth factors, neither antibody inhibited growth and the TKIs showed significantly reduced activity. The triple combination of trastuzumab, pertuzumab and a TKI showed the strongest anti-proliferative activity in all three cell lines, in the presence of exogenous growth factors. In summary, addition of anti-HER2 TKIs to combined anti-HER2 monoclonal antibody therapy results in enhanced anticancer activity. These data contribute to the rationale for studying maximum HER2 blockade in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792. https://doi.org/10.1056/NEJM200103153441101

    Article  CAS  PubMed  Google Scholar 

  2. Gullo G, Zuradelli M, Sclafani F, Santoro A, Crown J (2012) Durable complete response following chemotherapy and trastuzumab for metastatic HER2-positive breast cancer. Ann Oncol 23:2204–2205. https://doi.org/10.1093/annonc/mds221

    Article  CAS  PubMed  Google Scholar 

  3. Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Heeson S, Clark E, Ross G, Benyunes MC, Cortés J, CLEOPATRA Study Group (2015) Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med 372:724–734. https://doi.org/10.1056/NEJMoa1413513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dahabreh IJ, Linardou H, Siannis F, Fountzilas G, Murray S (2008) Trastuzumab in the adjuvant treatment of early-stage breast cancer: a systematic review and meta-analysis of randomized controlled trials. Oncologist 13:620–630. https://doi.org/10.1634/theoncologist.2008-0001

    Article  CAS  PubMed  Google Scholar 

  5. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im SA, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13:25–32. https://doi.org/10.1016/S1470-2045(11)70336-9

    Article  CAS  PubMed  Google Scholar 

  6. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, Suter T, Arahmani A, Rouchet N, Clark E, Knott A, Lang I, Levy C, Yardley DA, Bines J, Gelber RD, Piccart M, Baselga J, APHINITY Steering Committee and Investigators (2017) Adjuvant Pertuzumab and Trastuzumab in early HER2-positive breast Cancer. N Engl J Med 77:122–131. https://doi.org/10.1056/NEJMoa1703643

    Article  Google Scholar 

  7. Gaul MD, Guo Y, Affleck K, Cockerill GS, Gilmer TM, Griffin RJ, Guntrip S, Keith BR, Knight WB, Mullin RJ, Murray DM, Rusnak DW, Smith K, Tadepalli S, Wood ER, Lackey K (2003) Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines. Bioorg Med Chem Lett 13:637–640. https://doi.org/10.1016/S0960-894X(02)01047-8

    Article  CAS  PubMed  Google Scholar 

  8. Guan Z-z, Xu B-h, Arpornwirat W, Tong Z-s, Lorvidhaya V, Wang L, Newstat B, DeSilvio M, Moore Y, Shen Z-Z (2010) Overall survival benefit observed with lapatinib (L) plus paclitaxel (P) as first-line therapy in patients with HER2-overexpressing metastatic breast cancer (MBC). Cancer Res 70(24 Suppl): Abstract nr P3–14-24. https://doi.org/10.1158/0008-5472.SABCS10-P3-14-24

  9. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743. https://doi.org/10.1056/NEJMoa064320

    Article  CAS  PubMed  Google Scholar 

  10. de Azambuja E, Holmes AP, Piccart-Gebhart M, Holmes E, Di Cosimo S, Swaby RF, Untch M, Jackisch C, Lang I, Smith I, Boyle F, Xu B, Barrios CH, Perez EA, Azim HA Jr, Kim SB, Kuemmel S, Huang CS, Vuylsteke P, Hsieh RK, Gorbunova V, Eniu A, Dreosti L, Tavartkiladze N, Gelber RD, Eidtmann H, Baselga J (2014) Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncol 15:1137–1146. https://doi.org/10.1016/S1470-2045(14)70320-1

    Article  CAS  PubMed  Google Scholar 

  11. Piccart-Gebhart M, Holmes AP, Baselga J, De Azambuja E, Dueck AC, Viale G, Zujewski JA, Goldhirsch A, Santillana S, Pritchard KI et al (2014) First results from the phase III ALTTO trial (BIG 2-06; NCCTG [alliance] N063D) comparing one year of anti-HER2 therapy with lapatinib alone (L), trastuzumab alone (T), their sequence (T→L), or their combination (T+L) in the adjuvant treatment of HER2-positive early breast cancer (EBC). J Clin Oncol 32(5s): abstr LBA4

  12. Gelmon KA, Boyle FM, Kaufman B, Huntsman DG, Manikhas A, Di Leo A, Martin M, Schwartzberg LS, Lemieux J, Aparicio S, Shepherd LE, Dent S, Ellard SL, Tonkin K, Pritchard KI, Whelan TJ, Nomikos D, Nusch A, Coleman RE, Mukai H, Tjulandin S, Khasanov R, Rizel S, Connor AP, Santillana SL, Chapman JA, Parulekar WR (2015) Lapatinib or trastuzumab plus taxane therapy for human epidermal growth factor receptor 2-positive advanced breast cancer: Final results of NCIC CTG MA.31. J Clin Oncol 33:1574–1583. https://doi.org/10.1200/JCO.2014.56.9590

    Article  CAS  PubMed  Google Scholar 

  13. Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, Klein C, Kraemer O, Himmelsbach F, Haaksma E, Adolf GR (2012) Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther 343:342–350. https://doi.org/10.1124/jpet.112.197756

    Article  CAS  PubMed  Google Scholar 

  14. Tsou HR, Overbeek-Klumpers EG, Hallett WA, Reich MF, Floyd MB, Johnson BD, Michalak RS, Nilakantan R, Discafani C, Golas J, Rabindran SK, Shen R, Shi X, Wang YF, Upeslacis J, Wissner A (2005) Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J Med Chem 48:1107–1131. https://doi.org/10.1021/jm040159c

    Article  CAS  PubMed  Google Scholar 

  15. Park JW, Liu MC, Yee D, Yau C, van’t Veer LJ, Symmans WF, Paoloni M, Perlmutter J, Hylton NM, Hogarth M, DeMichele A, Buxton MB, Chien AJ, Wallace AM, Boughey JC, Haddad TC, Chui SY, Kemmer KA, Kaplan HG, Isaacs C, Nanda R, Tripathy D, Albain KS, Edmiston KK, Elias AD, Northfelt DW, Pusztai L, Moulder SL, Lang JE, Viscusi RK, Euhus DM, Haley BB, Khan QJ, Wood WC, Melisko M, Schwab R, Helsten T, Lyandres J, Davis SE, Hirst GL, Sanil A, Esserman LJ, Berry DA, I-SPY 2 Investigators (2016) Adaptive Randomization of Neratinib in Early Breast Cancer. N Engl J Med 375:11–22. https://doi.org/10.1056/NEJMoa1513750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan A, Delaloge S, Holmes FA, Moy B, Iwata H, Harvey VJ, Robert NJ, Silovski T, Gokmen E, von Minckwitz G, Ejlertsen B, Chia SK, Mansi J, Barrios CH, Gnant M, Buyse M, Gore I, Smith J 2nd, Harker G, Masuda N, Petrakova K, Zotano AG, Iannotti N, Rodriguez G, Tassone P, Wong A, Bryce R, Ye Y, Yao B, Martin M, ExteNET Study Group (2016) Neratinib after trastuzumab-based adjuvant therapy in patients with HER2-positive breast cancer (ExteNET): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 17:367–377. https://doi.org/10.1016/S1470-2045(15)00551-3

    Article  CAS  PubMed  Google Scholar 

  17. O'Brien NA, Browne BC, Chow L, Wang Y, Ginther C, Arboleda J, Duffy MJ, Crown J, O'Donovan N, Slamon DJ (2010) Activated phosphoinositide 3-kinase/AKT signalling confers resistance to trastuzumab but not lapatinib. Mol Cancer Ther 9:1489–1502. https://doi.org/10.1158/1535-7163.MCT-09-1171

    Article  CAS  PubMed  Google Scholar 

  18. O'Donovan N, Byrne AT, O'Connor AE, McGee S, Gallagher WM, Crown J (2011) Synergistic interaction between trastuzumab and EGFR/HER-2 tyrosine kinase inhibitors in HER-2 positive breast cancer cells. Investig New Drugs 29:752–759. https://doi.org/10.1007/s10637-010-9415-5

    Article  CAS  Google Scholar 

  19. Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ, Keith BR, Gilmer TM, Berger M, Podratz KC, Slamon DJ (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639. https://doi.org/10.1158/0008-5472.CAN-05-1182

    Article  CAS  PubMed  Google Scholar 

  20. Canonici A, Gijsen M, Mullooly M, Bennett R, Bouguern N, Pedersen K, O'Brien NA, Roxanis I, Li JL, Bridge E, Finn R, Siamon D, McGowan P, Duffy MJ, O'Donovan N, Crown J, Kong A (2013) Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer. Oncotarget 4:1592–1605. https://doi.org/10.18632/oncotarget.1148

    Article  PubMed  PubMed Central  Google Scholar 

  21. Collins DM, O'Donovan N, McGowan PM, O'Sullivan F, Duffy MJ, Crown J (2012) Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol 23:1788–1795. https://doi.org/10.1093/annonc/mdr484

    Article  CAS  PubMed  Google Scholar 

  22. Wind S, Schmid M, Erhardt J, Goeldner RG, Stopfer P (2013) Pharmacokinetics of afatinib, a selective irreversible ErbB family blocker, in patients with advanced solid tumours. Clin Pharmacokinet 52:1101–1109. https://doi.org/10.1007/s40262-013-0091-4

    Article  CAS  PubMed  Google Scholar 

  23. Wong KK, Fracasso PM, Bukowski RM, Lynch TJ, Munster PN, Shapiro GI, Jänne PA, Eder JP, Naughton MJ, Ellis MJ, Jones SF, Mekhail T, Zacharchuk C, Vermette J, Abbas R, Quinn S, Powell C, Burris HA (2009) A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors. Clin Cancer Res 15:2552–2558. https://doi.org/10.1158/1078-0432.CCR-08-1978

    Article  PubMed  Google Scholar 

  24. Henjes F, Bender C, von der Heyde S, Braun L, Mannsperger HA, Schmidt C, Wiemann S, Hasmann M, Aulmann S, Beissbarth T, Korf U (2012) Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis 1:e16. https://doi.org/10.1038/oncsis.2012.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ (2010) HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 122:35–43. https://doi.org/10.1007/s10549-009-0502-2

    Article  CAS  PubMed  Google Scholar 

  26. Schaefer G, Fitzpatrick VD, Sliwkowski MX (1997) Gamma-heregulin: a novel heregulin isoform that is an autocrine growth factor for the human breast cancer cell line, MDA-MB-175. Oncogene 15:1385–1394. https://doi.org/10.1038/sj.onc.1201317

    Article  CAS  PubMed  Google Scholar 

  27. Eccles SA (2011) The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol 55:685–696. https://doi.org/10.1387/ijdb.113396se

    Article  PubMed  Google Scholar 

  28. Ritter CA, Perez-Torres M, Rinehart C, Guix M, Dugger T, Engelman JA, Arteaga CL (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13(16):4909–4919. https://doi.org/10.1158/1078-0432.CCR-07-0701

    Article  CAS  PubMed  Google Scholar 

  29. Xia W, Petricoin EF 3rd, Zhao S, Liu L, Osada T, Cheng Q, Wulfkuhle JD, Gwin WR, Yang X, Gallagher RI, Bacus S, Lyerly HK, Spector NL (2013) An heregulin-EGFR-HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models. Breast Cancer Res 15(5):R85. https://doi.org/10.1186/bcr3480

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim JW, Kim DK, Min A, Lee KH, Nam HJ, Kim JH, Kim JS, Kim TY, Im SA, Park IA (2016) Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. J Cancer Res Clin Oncol 142:157–165. https://doi.org/10.1007/s00432-015-2012-4

    Article  CAS  PubMed  Google Scholar 

  31. Nahta R, Hung MC, Esteva FJ (2004) The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64:2343–2346

    Article  CAS  PubMed  Google Scholar 

  32. Scheuer W, Friess T, Burtscher H, Bossenmaier B, Endl J, Hasmann M (2009) Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res 69:9330–9336. https://doi.org/10.1158/0008-5472.CAN-08-4597

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Health Research Board Clinician Scientist Award (CSA/2007/11), the Irish Research Council for Science Engineering and Technology, Science Foundation Ireland (08/SRC/B1410), the Irish Cancer Society Collaborative Cancer Research Centre BREAST-PREDICT Grant (CCRC13GAL) and the Cancer Clinical Research Trust. “The opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Irish Cancer Society”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma O’Donovan.

Ethics declarations

Conflict of interest

NOD, AC, JC received research funding from Boehringer Ingelheim. DC, JC received research funding from Roche and Puma Biotechnology. DC received research funding from Puma Biotechnology. AC received travel support to attend meetings from Boehringer Ingelheim. NOD, JC received research funding from GlaxoSmithKline. JC received speaking/advisory honoraria from GlaxoSmithKline, Boehringer Ingelheim, Roche and Puma Biotechnology. All remaining authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Online Resource 1

Supplementary Tables 1 and 2 (DOCX 19 kb)

Online Resource 2

Supplementary Figures 1–3 (PPTX 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canonici, A., Ivers, L., Conlon, N.T. et al. HER-targeted tyrosine kinase inhibitors enhance response to trastuzumab and pertuzumab in HER2-positive breast cancer. Invest New Drugs 37, 441–451 (2019). https://doi.org/10.1007/s10637-018-0649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-018-0649-y

Keywords

Navigation