Skip to main content
Log in

Cellulose nanosheets formed by mild additive-free ball milling

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanosheets similar to those obtained by milling with silicone oil (Zhao et al. in Cellulose 23:2809–2818, 2016) were obtained by mild additive-free milling followed by dispersion in ethanol. Typical nanosheets were of 4 nm thickness, possibly formed by monolayer association of elementary fibrils. The thickness decreased with prolonged milling to 2 nm or less, and the thinnest sheets observed were about 0.4 nm, corresponding to monomolecular layer of cellulose. Further milling caused disappearance of nanosheets due to complete decrystallization. This observation indicates that nanosheet formation is an intermediate stage of decrystallization of cellulose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261

    Article  CAS  Google Scholar 

  • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733

    Article  CAS  Google Scholar 

  • Ago M, Endo T, Okajima K (2007) Effect of solvent on morphological and structural change of cellulose under ball-milling. Polym J 39:435–441

    Article  CAS  Google Scholar 

  • Avolio R, Bonadies I, Capitani D, Errico ME, Gentile G, Avella M (2012) A multitechnique approach to assess the effect of ball milling on cellulose. Carbohyd Polym 87:265–273

    Article  CAS  Google Scholar 

  • Cervin NT, Aulin C, Larsson PT, Wagberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  CAS  PubMed  Google Scholar 

  • Edwards HGM, Farwell DW, Webster D (1997) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A Mol Biomol Spectrosc 53:2383–2392

    Article  Google Scholar 

  • Eronen P, Osterberg M, Jaaskelainen A-S (2009) Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy. Cellulose 16:167–178

    Article  CAS  Google Scholar 

  • Fengel D (1992) Characterization of cellulose by deconvoluting the oh valency range in FTIR spectra. Holzforschung 46:283–288

    Article  CAS  Google Scholar 

  • Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108

    Article  CAS  Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad WY (2008) Studies of deformation processes in cellulosics using Raman microscopy. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing Ltd., Oxford, pp 121–137

    Google Scholar 

  • Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. Chemsuschem 5:2319–2322

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Zhao Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759

    Article  CAS  PubMed  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26:17919–17925

    Article  CAS  Google Scholar 

  • Kang X, Sun P, Kuga S, Wang C, Zhao Y, Wu M, Huang Y (2017) Thin cellulose nanofiber from corncob cellulose and its performance in transparent nanopaper. ACS Sustain Chem Eng 5:2529–2534

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Renneckar S (2009) Molecularly thin nanoparticles from cellulose: isolation of sub-microfibrillar structures. Cellulose 16:1025–1032

    Article  CAS  Google Scholar 

  • Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659

    Article  CAS  PubMed  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in I-beta cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196

    Article  CAS  Google Scholar 

  • Mohan T, Spirk S, Kargl R, Doliska A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y (2018) Molecular interactions in nanocellulose assembly. Philos Trans R Soc Math Phys Eng Sci 376(2112):20170047

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of x-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  PubMed  Google Scholar 

  • Qian XH, Ding SY, Nimlos MR, Johnson DK, Himmel ME (2005) Atomic and electronic structures of molecular crystalline cellulose I beta: a first-principles investigation. Macromolecules 38:10580–10589

    Article  CAS  Google Scholar 

  • Rao X, Kuga S, Wu M, Huang Y (2015) Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose 22:2341–2348

    Article  CAS  Google Scholar 

  • Sato K, Mochizuki H, Okajima K, Yamane C (2004) Effects of hydrophobic solvents on x-ray diffraction patterns of regenerated cellulose membrane. Polym J 36:478–482

    Article  CAS  Google Scholar 

  • Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12:223–231

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ Jr, Martin AE (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed Engl 51:6886–6890

    Article  CAS  PubMed  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7:415–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Kuga S, Jiang S, Wu M, Huang Y (2016) Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose 23:2809–2818

    Article  CAS  Google Scholar 

  • Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 51733009) and Chinese Academy of Sciences Visiting Professorships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wu or Yong Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kuga, S., Wu, M. et al. Cellulose nanosheets formed by mild additive-free ball milling. Cellulose 26, 3143–3153 (2019). https://doi.org/10.1007/s10570-019-02282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02282-7

Keywords

Navigation