Skip to main content

Advertisement

Log in

Genomic profile of breast sarcomas: a comparison with malignant phyllodes tumours

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

We aimed to investigate the genomic profile of breast sarcomas (BS) and compare with that of malignant phyllodes tumours (MPT).

Methods

DNA was extracted from formalin-fixed, paraffin-embedded (FFPE) specimens from 17 cases of BS diagnosed at Singapore General Hospital from January 1991 to December 2014. Targeted deep sequencing and copy number variation (CNV) analysis on 16 genes, which included recurrently mutated genes in phyllodes tumours and genes associated with breast cancer, were performed on these samples. Genetic alterations (GA) observed were summarised and analysed.

Results

Nine cases met the quality control requirements for both targeted deep sequencing and CNV analysis. Three (33.33%) were angiosarcomas and 6 (66.67%) were non-angiosarcomas. In the non-angiosarcoma group, 83.33% (n = 5) of the patients had GA in the TERT gene. The other commonly mutated genes in this group of tumours were MED12 (n = 4, 66.67%), BCOR (n = 4, 66.67%), KMT2D (n = 3, 50%), FLNA (n = 3, 50%) and NF1 (n = 3, 50%). In contrast, none of the angiosarcomas had mutations or copy number alterations in TERT, MED12, BCOR, FLNA or NF1. Eighty percent of patients with GA in TERT (n = 5) had concurrent mutations in MED12. Sixty percent (n = 3) of these cases also demonstrated GA in NF1, PIK3CA or EGFR which are known cancer driver genes.

Conclusions

The non-angiosarcoma group of BS was found to share similar GA as those described for MPT, which may suggest a common origin and support their consideration as a similar group of tumours with regard to management and prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pollard SG, Marks PV, Temple LN, Thompson HH (1990) Breast sarcoma. A clinicopathologic review of 25 cases. Cancer 66:941–944. https://doi.org/10.1002/1097-0142(19900901)66:5%3C941::AID-CNCR2820660522%3E3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  2. Terrier P, Terrier-Lacombe MJ, Mouriesse H, Friedman S, Spielmann M, Contesso G (1989) Primary breast sarcoma: a review of 33 cases with immunohistochemistry and prognostic factors. Breast Cancer Res Treat 13(1):39–48. https://doi.org/10.1007/BF01806549

    Article  CAS  PubMed  Google Scholar 

  3. Lim SZ, Selvarajan S, Thike AA, Nasir ND, Tan BK, Ong KW, Tan PH (2016) Breast sarcomas and malignant phyllodes tumours: comparison of clinicopathological features, treatment strategies, prognostic factors and outcomes. Breast Cancer Res Treat 159:229–244. https://doi.org/10.1007/s10549-016-3946-1

    Article  PubMed  Google Scholar 

  4. Bousquet G, Confavreux C, Magné N, de Lara CT, Poortmans P, Senkus E, de Lafontan B, Bolla M, Largillier R, Lagneau E, Kadish S, Lemanski C, Ozsahin M, Belkacémi Y (2007) Outcome and prognostic factors in breast sarcoma: a multicenter study from the rare cancer network. Radiother Oncol 85(3):355–361. https://doi.org/10.1016/j.radonc.2007.10.015

    Article  PubMed  Google Scholar 

  5. Johnstone PA, Pierce LJ, Merino MJ, Yang JC, Epstein AH, DeLaney TF (1993) Primary soft tissue sarcomas of the breast: local-regional control with post-operative radiotherapy. Int J Radiat Oncol Biol Phys 27(3):671–675. https://doi.org/10.1016/0360-3016(93)90395-C

    Article  CAS  PubMed  Google Scholar 

  6. Toesca A, Spitaleri G, De Pas T, Botteri E, Gentilini O, Bottiglieri L, Rotmentsz N, Sangalli C, Marrazzo E, Cassano E, Veronesi P, Rietjens M, Luini A (2012) Sarcoma of the breast: outcome and reconstructive options. Clin Breast Cancer 12(6):438–444. https://doi.org/10.1016/j.clbc.2012.09.008

    Article  PubMed  Google Scholar 

  7. Adem C, Reynolds C, Ingle JN, Nascimento AG (2004) Primary breast sarcoma: clinicopathologic series from the Mayo Clinic and review of the literature. Br J Cancer 91(2):237–241. https://doi.org/10.1038/sj.bjc.6601920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barnes L, Pietruszka M (1977) Sarcomas of the breast: a clinicopathologic analysis of ten cases. Cancer 40(4):1577–1585. https://doi.org/10.1002/1097-0142(197710)40:4%3C1577::AID-CNCR2820400430%3E3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  9. Barrow BJ, Janjan NA, Gutman H, Benjamin RS, Allen P, Romsdahl MM, Ross MI, Pollock RE (1999) Role of radiotherapy in sarcoma of the breast–a retrospective review of the M.D. Anderson experience. Radiother Oncol 52(2):173–178. https://doi.org/10.1016/S0167-8140(99)00070-5

    Article  CAS  PubMed  Google Scholar 

  10. Fields RC, Aft RL, Gillanders WE, Eberlein TJ, Margenthaler JA (2008) Treatment and outcomes of patients with primary breast sarcoma. Am J Surg 196(4):559–561. https://doi.org/10.1016/j.amjsurg.2008.06.010

    Article  PubMed  Google Scholar 

  11. North JH Jr, McPhee M, Arredondo M, Edge SB (1998) Sarcoma of the breast: implications of the extent of local therapy. Am Surg 64(11):1059–1061

    PubMed  Google Scholar 

  12. Pandey M, Mathew A, Abraham EK, Rajan B (2004) Primary sarcoma of the breast. J Surg Oncol 87(3):121–125. https://doi.org/10.1002/jso.20110

    Article  PubMed  Google Scholar 

  13. Stanley MW, Tani EM, Horwitz CA, Tulman S, Skoog L (1988) Primary spindle-cell sarcomas of the breast: diagnosis by fine-needle aspiration. Diagn Cytopathol 4(3):244–249. https://doi.org/10.1002/dc.2840040313

    Article  CAS  PubMed  Google Scholar 

  14. Surov A, Holzhausen HJ, Ruschke K, Spielmann RP (2011) Primary breast sarcoma: prevalence, clinical signs, and radiological features. Acta Radiol 52(6):597–601. https://doi.org/10.1258/ar.2011.100468

    Article  PubMed  Google Scholar 

  15. Lim SZ, Ong KW, Tan BK, Selvarajan S, Tan PH (2016) Sarcoma of the breast: an update on a rare entity. J Clin Pathol 69(5):373–381. https://doi.org/10.1136/jclinpath-2015-203545

    Article  PubMed  Google Scholar 

  16. Gao P, Seebacher NA, Hornicek F, Guo Z, Duan Z (2018) Advances in sarcoma gene mutations and therapeutic targets. Cancer Treat Rev 62:98–109. https://doi.org/10.1016/j.ctrv.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  17. Tan PH, Tse GM, Lee A, Simpson J, Hanby A (2012) Fibroepithelial tumours. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ (eds) WHO classification of tumours of the breast. IARC Press, Lyon, pp 142–147

    Google Scholar 

  18. Sawyer EJ, Poulsom R, Hunt FT, Jeffery R, Elia G, Ellis IO, Ellis P, Tomlinson IP, Hanby AM (2003) Malignant phyllodes tumours show stromal overexpression of c-myc and c-kit. J Pathol 200(1):59–64. https://doi.org/10.1002/path.1318

    Article  CAS  PubMed  Google Scholar 

  19. Sawyer EJ, Hanby AM, Rowan AJ, Gillett CE, Thomas RE, Poulsom R, Lakhani SR, Ellis IO, Ellis P, Tomlinson IP (2002) The Wnt pathway, epithelial-stromal interactions, and malignant progression in phyllodes tumours. J Pathol 196(4):437–444. https://doi.org/10.1002/path.1067

    Article  CAS  PubMed  Google Scholar 

  20. Sawyer EJ, Hanby AM, Ellis P, Lakhani SR, Ellis IO, Boyle S, Tomlinson IP (2000) Molecular analysis of phyllodes tumors reveals distinct changes in the epithelial and stromal components. Am J Pathol 156(3):1093–1098. https://doi.org/10.1016/S0002-9440(10)64977-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karim RZ, Gerega SK, Yang YH, Horvath L, Spillane A, Carmalt H, Scolyer RA, Lee CS (2009) Proteins from the Wnt pathway are involved in the pathogenesis and progression of mammary phyllodes tumours. J Clin Pathol 62(11):1016–1020. https://doi.org/10.1136/jcp.2009.066977

    Article  CAS  PubMed  Google Scholar 

  22. Karim RZ, Scolyer RA, Tse GM, Tan PH, Putti TC, Lee CS (2009) Pathogenic mechanisms in the initiation and progression of mammary phyllodes tumours. Pathology 41(2):105–117. https://doi.org/10.1080/00313020802579342

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida M, Ogawa R, Yoshida H, Maeshima A, Kanai Y, Kinoshita T, Hiraoka N, Sekine S (2015) TERT promoter mutations are frequent and show association with MED12 mutations in phyllodes tumors of the breast. Br J Cancer 113(8):1244–1248. https://doi.org/10.1038/bjc.2015.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan J, Ong CK, Lim WK, Ng CC, Thike AA, Ng LM, Rajasegaran V, Myint SS, Nagarajan S, Thangaraju S, Dey S, Nasir ND, Wijaya GC, Lim JQ, Huang D, Li Z, Wong BH, Chan JY, McPherson JR, Cutcutache I, Poore G, Tay ST, Tan WJ, Putti TC, Ahmad BS, Iau P, Chan CW, Tang AP, Yong WS, Madhukumar P, Ho GH, Tan VK, Wong CY, Hartman M, Ong KW, Tan BK, Rozen SG, Tan P, Tan PH, Teh BT (2015) Genomic landscapes of breast fibroepithelial tumors. Nat Genet 47(11):1341–1345. https://doi.org/10.1038/ng.3409

    Article  CAS  PubMed  Google Scholar 

  25. Nozad S, Sheehan CE, Gay LM, Elvin JA, Vergilio JA, Suh J, Ramkissoon S, Schrock AB, Hirshfield KM, Ali N, Ganesan S, Ali SM, Miller VA, Stephens PJ, Ross JS, Chung JH (2017) Comprehensive genomic profiling of malignant phyllodes tumors of the breast. Breast Cancer Res Treat 162(3):597–602. https://doi.org/10.1007/s10549-017-4156-1

    Article  CAS  PubMed  Google Scholar 

  26. McGowan TS, Cummings BJ, O’Sullivan B, Catton CN, Miller N, Panzarella T (2000) An analysis of 78 breast sarcoma patients without distant metastases at presentation. Int J Radiat Oncol Biol Phys 46(2):383–390. https://doi.org/10.1016/S0360-3016(99)00444-7

    Article  CAS  PubMed  Google Scholar 

  27. McGregor GI, Knowling MA, Este FA (1994) Sarcoma and Cystosarcoma phyllodes tumors of the breast–a retrospective review of 58 cases. Am J Surg 167(5):477–480. https://doi.org/10.1016/0002-9610(94)90238-0

    Article  CAS  PubMed  Google Scholar 

  28. Confavreux C, Lurkin A, Mitton N, Blondet R, Saba C, Ranchère D, Sunyach MP, Thiesse P, Biron P, Blay JY, Ray-Coquard I (2006) Sarcomas and malignant phyllodes tumours of the breast–a retrospective study. Eur J Cancer 42(16):2715–2721. https://doi.org/10.1016/j.ejca.2006.05.040

    Article  CAS  PubMed  Google Scholar 

  29. Wang F, Jia Y, Tong Z (2015) Comparison of the clinical and prognostic features of primary breast sarcomas and malignant phyllodes tumor. Jpn J Clin Oncol 45(2):146–152. https://doi.org/10.1093/jjco/hyu177

    Article  PubMed  Google Scholar 

  30. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74. https://doi.org/10.1038/nature15393

    Article  CAS  Google Scholar 

  31. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. https://arxiv.org/abs/1207.3907. Accessed 5 Sept 2018

  34. Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10(10):1556–1566. https://doi.org/10.1038/nprot.2015.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  36. Jung H-S, Lefferts JA, Gregory J, Tsongalis (2017) Utilization of the oncoscan microarray assay in cancer diagnostics. Appl Cancer Res 37(1):1. https://doi.org/10.1186/s41241-016-0007-3

    Article  Google Scholar 

  37. Schmidt J, Liu B, Ghent M, Bolstad B, Siddiqui F, Abdueva D, Marjanovic M, Saplosky R, Shukla A, Venkatapathy S, Chen C, Bruckner C, Huynh V, Liu L, Suyenaga K, Weaver P, Greenfield L, Fung E (2014) A new method for high fidelity copy number analysis in solid tumor samples and its implementation in the OncoScan ™ FFPE assay kit. American Society of Human Genetics. http://www.ashg.org/2014meeting/abstracts/fulltext/f140122485.htm. Accessed 6 May 2018

  38. Zelek L, Llombart-Cussac A, Terrier P, Pivot X, Guinebretiere JM, Le Pechoux C, Tursz T, Rochard F, Spielmann M, Le Cesne A (2003) Prognostic factors in primary breast sarcomas: a series of patients with long-term follow-up. J Clin Oncol 21(13):2583–2588. https://doi.org/10.1200/JCO.2003.06.080

    Article  CAS  PubMed  Google Scholar 

  39. Fraga-Guedes C, André S, Mastropasqua MG, Botteri E, Toesca A, Rocha RM, Peradze N, Rotmensz N, Viale G, Veronesi P, Gobbi H (2015) Angiosarcoma and atypical vascular lesions of the breast: diagnostic and prognostic role of MYC gene amplification and protein expression. Breast Cancer Res Treat 151(1):131–140. https://doi.org/10.1007/s10549-015-3379-2

    Article  CAS  PubMed  Google Scholar 

  40. Manner J, Radlwimmer B, Hohenberger P, Mössinger K, Küffer S, Sauer C, Belharazem D, Zettl A, Coindre JM, Hallermann C, Hartmann JT, Katenkamp D, Katenkamp K, Schöffski P, Sciot R, Wozniak A, Lichter P, Marx A, Ströbel P (2010) MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol 176(1):34–39. https://doi.org/10.2353/ajpath.2010.090637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Italiano A, Thomas R, Breen M, Zhang L, Crago AM, Singer S, Khanin R, Maki RG, Mihailovic A, Hafner M, Tuschl T, Antonescu CR (2012) The miR-17-92 cluster and its target THBS1 are differentially expressed in angiosarcomas dependent on MYC amplification. Genes Chromosomes Cancer 51(6):569–578. https://doi.org/10.1002/gcc.21943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo T, Zhang L, Chang NE, Singer S, Maki RG, Antonescu CR (2011) Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer 50(1):25–33. https://doi.org/10.1002/gcc.20827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thibodeau BJ, Lavergne V, Dekhne N, Benitez P, Amin M, Ahmed S, Nakamura JL, Davidson PR, Nakamura AO, Grills IS, Chen PY, Wobb J, Wilson GD (2018) Mutational landscape of radiation-associated angiosarcoma of the breast. Oncotarget 9(11):10042–10053. https://doi.org/10.18632/oncotarget.24273

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Singapore General Hospital Research Grant 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puay Hoon Tan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional research board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.Z., Ng, C.C.Y., Rajasegaran, V. et al. Genomic profile of breast sarcomas: a comparison with malignant phyllodes tumours. Breast Cancer Res Treat 174, 365–373 (2019). https://doi.org/10.1007/s10549-018-5067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-5067-5

Keywords

Navigation