Skip to main content
Log in

Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Presently, cardiovascular interventions such as stent deployment and balloon angioplasty are performed under x-ray guidance. However, x-ray fluoroscopy has poor soft tissue contrast and is limited by imaging in a single plane, resulting in imprecise navigation of endovascular instruments. Moreover, x-ray fluoroscopy exposes patients to ionizing radiation and iodinated contrast agents. Magnetic resonance imaging (MRI) is a safe and enabling modality for cardiovascular interventions. Interventional cardiovascular MR (iCMR) is a promising approach that is in stark contrast with x-ray fluoroscopy, offering high-resolution anatomic and physiologic information and imaging in multiple planes for enhanced navigational accuracy of catheter-based devices, all in an environment free of radiation and its deleterious effects. While iCMR has immense potential, its translation into the clinical arena is hindered by the limited availability of MRI-visible catheters, wire guides, angioplasty balloons, and stents. Herein, we aimed to create application-specific, devices suitable for iCMR, and demonstrate the potential of iCMR by performing cardiovascular catheterization procedures using these devices. Tools, including catheters, wire guides, stents, and angioplasty balloons, for endovascular interventions were functionalized with a polymer coating consisting of poly(lactide-co-glycolide) (PLGA) and superparamagnetic iron oxide (SPIO) nanoparticles, followed by endovascular deployment in the pig. Findings from this study highlight the ability to image and properly navigate SPIO-functionalized devices, enabling interventions such as successful stent deployment under MRI guidance. This study demonstrates proof-of-concept for rapid prototyping of iCMR-specific endovascular interventional devices that can take advantage of the capabilities of iCMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • M. Andreucci, T. Faga, R. Serra, G. De Sarro, A. Michael, Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc. Patient Saf. 9, 25–37 (2017)

    Article  Google Scholar 

  • C.J. Bakker, R.M. Hoogeveen, J. Weber, J.J. vanVaals, M.A. Viergever, W.P. Mali, Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn. Reson. Med. 36(6), 816–820 (1996)

    Article  Google Scholar 

  • E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, et al., Heart disease and stroke Statistics-2018 update: A report from the American Heart Association. Circulation 137(12), e67–e492 (2018)

    Article  Google Scholar 

  • A. Berrington de Gonzalez, S. Darby, Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 363(9406), 345–351 (2004)

    Article  Google Scholar 

  • T.M. Bhat, M.E. Afari, L.A. Garcia, Atherectomy in peripheral artery disease: A review. J Invasive Cardiol 29(4), 135–144 (2017)

    Google Scholar 

  • M. Bock, S. Volz, S. Zuhlsdorff, R. Umathum, C. Fink, P. Hallscheidt, et al., MR-guided intravascular procedures: Real-time parameter control and automated slice positioning with active tracking coils. J. Magn. Reson. Imaging 19(5), 580–589 (2004)

    Article  Google Scholar 

  • M. Bock, R. Umathum, S. Zuehlsdorff, S. Volz, C. Fink, P. Hallscheidt, et al., Interventional magnetic resonance imaging: An alternative to image guidance with ionising radiation. Radiat. Prot. Dosim. 117(1–3), 74–78 (2005)

    Article  Google Scholar 

  • C.E. Chambers, K.A. Fetterly, R. Holzer, P.J. Lin, J.C. Blankenship, S. Balter, et al., Radiation safety program for the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. 77(4), 546–556 (2011)

    Article  Google Scholar 

  • H. Clogenson, J. Dobbelsteen, Catheters and guidewires for interventional MRI: Are we there yet? J Imaging Intervent Radiol 2, 28 (2016)

    Google Scholar 

  • Z.C. Higgs, D.A. Macafee, B.D. Braithwaite, C.A. Maxwell-Armstrong, The Seldinger technique: 50 years on. Lancet 366(9494), 1407–1409 (2005)

    Article  Google Scholar 

  • T. Klemm, S. Duda, J. Machann, K. Seekamp-Rahn, L. Schnieder, C.D. Claussen, et al., MR imaging in the presence of vascular stents: A systematic assessment of artifacts for various stent orientations, sequence types, and field strengths. J. Magn. Reson. Imaging 12(4), 606–615 (2000)

    Article  Google Scholar 

  • O. Kocaturk, A.H. Kim, C.E. Saikus, M.A. Guttman, A.Z. Faranesh, C. Ozturk, et al., Active two-channel 0.035″ guidewire for interventional cardiovascular MRI. J. Magn. Reson. Imaging 30(2), 461–465 (2009)

    Article  Google Scholar 

  • J.J. Krueger, P. Ewert, S. Yilmaz, D. Gelernter, B. Peters, K. Pietzner, et al., Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: A pilot study. Circulation 113(8), 1093–1100 (2006)

    Article  Google Scholar 

  • S. Krueger, S. Schmitz, S. Weiss, D. Wirtz, M. Linssen, H. Schade, et al., An MR guidewire based on micropultruded fiber-reinforced material. Magn. Reson. Med. 60(5), 1190–1196 (2008)

    Article  Google Scholar 

  • J. Lotz, Interventional vascular MRI: Moving forward. Eur. Heart J. 34(5), 327–329 (2013)

    Article  Google Scholar 

  • Y. Ma, N. Gogin, P. Cathier, R.J. Housden, G. Gijsbers, M. Cooklin, et al., Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Med. Phys. 40(7), 071902 (2013)

    Article  Google Scholar 

  • P. Magnusson, E. Johansson, S. Mansson, J.S. Petersson, C.M. Chai, G. Hansson, et al., Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn. Reson. Med. 57(6), 1140–1147 (2007)

    Article  Google Scholar 

  • J.R. Mazal, T. Rogers, W.H. Schenke, A.Z. Faranesh, M. Hansen, K. O'Brien, et al., Interventional-cardiovascular MR: Role of the interventional MR technologist. Radiol. Technol. 87(3), 261–270 (2016)

    Google Scholar 

  • M.E. Miquel, S. Hegde, V. Muthurangu, B.J. Corcoran, S.F. Keevil, D.L.G. Hill, et al., Visualization and tracking of an inflatable balloon catheter using SSFP in a flow phantom and in the heart and great vessels of patients. Magn. Reson. Med. 51(5), 988–995 (2004)

    Article  Google Scholar 

  • R.A. Omary, O. Unal, D.S. Koscielski, R. Frayne, F.R. Korosec, C.A. Mistretta, et al., Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J. Vasc. Interv. Radiol. 11(8), 1079–1085 (2000)

    Article  Google Scholar 

  • T. Pucelikova, G. Dangas, R. Mehran, Contrast-induced nephropathy. Catheter. Cardiovasc. Interv. 71(1), 62–72 (2008)

    Article  Google Scholar 

  • K. Ratnayaka, A.Z. Faranesh, M.A. Guttman, O. Kocaturk, C.E. Saikus, R.J. Lederman, Interventional cardiovascular magnetic resonance: still tantalizing. J. Cardiovasc. Magn. Reson. 10, 62 (2008)

    Article  Google Scholar 

  • K. Ratnayaka, A.Z. Faranesh, M.S. Hansen, A.M. Stine, M. Halabi, I.M. Barbash, et al., Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur. Heart J. 34(5), 380–389 (2013)

    Article  Google Scholar 

  • A.N. Raval, J.D. Telep, M.A. Guttman, C. Ozturk, M. Jones, R.B. Thompson, et al., Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation 112(5), 699–706 (2005)

    Article  Google Scholar 

  • T. Rogers, K. Ratnayaka, J.M. Khan, A. Stine, W.H. Schenke, L.P. Grant, et al., CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: Results in 102 patients. J. Cardiovasc. Magn. Reson. 19(1), 54 (2017)

    Article  Google Scholar 

  • D.L. Rubin, A.V. Ratner, S.W. Young, Magnetic-susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic-resonance-imaging. Investig. Radiol. 25(12), 1325–1332 (1990)

    Article  Google Scholar 

  • M. Saeed, S.W. Hetts, J. English, M. Wilson, MR fluoroscopy in vascular and cardiac interventions (review). Int. J. Card. Imaging 28(1), 117–137 (2012)

    Article  Google Scholar 

  • C.E. Saikus, R.J. Lederman, Interventional cardiovascular magnetic resonance imaging: A new opportunity for image-guided interventions. JACC. Cardiovasc. Imaging 2(11), 1321–1331 (2009)

    Article  Google Scholar 

  • K. Slicker, W.G. Lane, O.O. Oyetayo, L.A. Copeland, E.M. Stock, J.B. Michel, et al., Daily cardiac catheterization procedural volume and complications at an academic medical center. Cardiovasc. Diagn. Ther. 6(5), 446–452 (2016)

    Article  Google Scholar 

  • A. Stadler, W. Schima, A. Ba-Ssalamah, J. Kettenbach, E. Eisenhuber, Artifacts in body MR imaging: Their appearance and how to eliminate them. Eur. Radiol. 17(5), 1242–1255 (2007)

    Article  Google Scholar 

  • O. Unal, J. Li, W. Cheng, H. Yu, C.M. Strother, MR-visible coatings for endovascular device visualization. J. Magn. Reson. Imaging 23(5), 763–769 (2006)

    Article  Google Scholar 

  • K. Zhang, A.J. Krafft, R. Umathum, F. Maier, W. Semmler, M. Bock, Real-time MR navigation and localization of an intravascular catheter with ferromagnetic components. Magn Reson Mater Phy 23(3), 153–163 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Matthew G. Landry for assistance with schematics. This work was supported by the George and Angelina Kostas Research Center for Cardiovascular Nanomedicine. CHL acknowledges support from the Houston Methodist Specialty Physician Group Grant Program. VS-I is grateful for support from the Instituto Tecnológico y de Estudios Superiores de Monterrey and the Consejo Nacional de Ciencia y Tecnología (CONACyT, 490202/278979). MF gratefully acknowledges support from the Ernest Cockrell Jr. Presidential Distinguished Chair at the Houston Methodist Research Institute. MF serves on the Board of Directors of Arrowhead Pharmaceuticals. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elvin Blanco or C. Huie Lin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, E., Segura-Ibarra, V., Bawa, D. et al. Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging. Biomed Microdevices 21, 38 (2019). https://doi.org/10.1007/s10544-019-0393-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0393-x

Keywords

Navigation