Skip to main content
Log in

Coupling tumor growth and bio distribution models

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We couple a tumor growth model embedded in a microenvironment, with a bio distribution model able to simulate a whole organ. The growth model yields the evolution of tumor cell population, of the differential pressure between cell populations, of porosity of ECM, of consumption of nutrients due to tumor growth, of angiogenesis, and related growth factors as function of the locally available nutrient. The bio distribution model on the other hand operates on a frozen geometry but yields a much refined distribution of nutrient and other molecules. The combination of both models will enable simulating the growth of a tumor in a whole organ, including a realistic distribution of therapeutic agents and allow hence to evaluate the efficacy of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

References

  • A.R. Anderson, M.A. Chaplain, Bull. Math. Biol. 60, 857 (1998)

    Article  Google Scholar 

  • C.J.W. Breward, H.M. Byrne, C.E. Lewis, A multiphase model describing vascular tumour growth. Bull. Math. Biol. 65, 609–640 (2003). https://doi.org/10.1016/S0092-8240(03)00027-2

  • A.R. Carotenuto, A. Cutolo, A. Petrillo, R. Fusco, C. Arra, M. Sansone, D. Larobina, L. Cardoso, M. Fraldi, J. Mech. Behav. Biomed. Mater. 86, 55 (2018)

    Article  Google Scholar 

  • S.C. Cowin, L. Cardoso, Mech. Mater. 44, 47 (2012)

    Article  Google Scholar 

  • M.W. Dewhirst, T.W. Secomb, Nat. Rev. Cancer 17, 738 (2017)

    Article  Google Scholar 

  • D.E. Discher, P. Janmey, Y.-L. Wang, Science 310, 1139 (2005)

    Article  Google Scholar 

  • S. Eikenberry, C. Thalhauser, Y. Kuang, PLoS Comput. Biol. 5, e1000362 (2009)

    Article  Google Scholar 

  • M. Ferrari, Trends Biotechnol. 28, 181 (2010)

    Article  Google Scholar 

  • M. Ferrari, Int. J. Non. Linear. Mech. 56, 3 (2013)

    Article  Google Scholar 

  • M. Fraldi, A.R. Carotenuto, J. Mech. Phys. Solids 112, 345 (2018)

    Article  MathSciNet  Google Scholar 

  • G. Freyer, B. Ligneau, B. Tranchand, C. Ardiet, F. Serre-Debeauvais, V. Trillet-Lenoir, Cancer Treat. Rev. 23, 153 (1997)

    Article  Google Scholar 

  • W. Gray, C. Miller, Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems (Springer International Publinshing, Cham, 2014)

    Book  Google Scholar 

  • W. Gray, B. Schrefler, Int. J. Numer. Anal. Methods Geomech. 31, 541 (2007)

    Article  Google Scholar 

  • W.G. Gray, C.T. Miller, B.A. Schrefler, Adv. Water Resour. 51, 123 (2013)

    Article  Google Scholar 

  • A. Hawkins-Daarud, S. Prudhomme, K.G. van der Zee, J.T. Oden, J. Math. Biol. 67, 1457 (2013)

    Article  MathSciNet  Google Scholar 

  • E.J. Koay, M. Ferrari, Phys. Biol. 11, 60201 (2014)

    Article  Google Scholar 

  • M. Kojic, M. Milosevic, V. Simic, E.J. Koay, N. Kojic, A. Ziemys, M. Ferrari, Multiscale smeared finite element model for mass transport in biological tissue: from blood vessels to cells and cellular organelles. Comput. Biol. Med. 99, 7–23 (2018). https://doi.org/10.1016/j.compbiomed.2018.05.022

  • M. Kojic, M. Milosevic, V. Simic, E.J. Koay, J.B. Fleming, S. Nizzero, N. Kojic, A. Ziemys, M. Ferrari, Comput. Methods Appl. Mech. Eng. 324, 413 (2017a)

    Article  Google Scholar 

  • M. Kojic, M. Milosevic, V. Simic, E.J. Koay, N. Kojic, A. Ziemys, M. Ferrari, J. Serbian Soc. Comput. Mech. 11, 108 (2017b)

    Article  Google Scholar 

  • M. Kojic, R. Slavkovic, M. Zivkovic, N. Grujovic, N. Filipovic, M. Milosevic, PAK-Finite element program for linear and nonlinear analysis; software patent. Univ Kragujevac and R&D Center for Bioengineering, Kragujevac, (2010)

  • J. Kremheller, A.T. Vuong, L. Yoshihara, W.A. Wall, B.A. Schrefler, Comput. Methods Appl. Mech. Eng. 340, 657 (2018)

    Article  Google Scholar 

  • E.A.B.F. Lima, R.C. Almeida, J.T. Oden. Analysis and numerical solution of stochastic phase-field models of tumor growth. Numerical methods for partial differential equations. 31, 552–574 (2015). https://doi.org/10.1002/num.21934

  • E.A.B.F. Lima, J.T. Oden, D.A. Hormuth 2nd, T.E. Yankeelov, R.C. Almeida, Math. Models Methods Appl. Sci. 26, 2341 (2016)

    Article  MathSciNet  Google Scholar 

  • F. Michor, J. Liphardt, M. Ferrari, J. Widom, hat does physics have to do with cancer? Nat. Rev. Cancer. 11, 657–670 (2011). https://doi.org/10.1038/nrc3092

  • M. Milosevic, V. Simic, B. Milicevic, E. Koay, M. Ferrari, A. Ziemys, M. Kojic, Comput. Methods Appl. Mech. Eng. 338, 97 (2018)

    Article  Google Scholar 

  • N.M. Moore, N. Kuhn, S.E. Hanlon, J.S.H. Lee, L.A. Nagahara, Phys. Biol. 8, 10302 (2011)

    Article  Google Scholar 

  • J.T. Oden, A. Hawkins, S. Prudhomme, Math. Model. Methods Appl. Sci. 20, 477 (2010)

    Article  Google Scholar 

  • J.T. Oden, E.A.B.F. Lima, R.C. Almeida, Y. Feng, M.N. Rylander, D. Fuentes, D. Faghihi, M.M. Rahman, M. DeWitt, M. Gadde, J.C. Zhou, Arch. Comput. Methods Eng. 23, 735 (2016)

    Article  MathSciNet  Google Scholar 

  • J.T. Oden, E.E. Prudencio, A. Hawkins-Daarud, Math. Model. Methods Appl. Sci. 23, 1309 (2013)

    Article  Google Scholar 

  • M.M. Rahman, Y. Feng, T. Yankeelov, J.T. Oden, Comput. Methods Appl. Mech. Eng. 320, 261 (2017)

    Article  Google Scholar 

  • H.L. Rocha, R.C. Almeida, E.A.B.F. Lima, A.C.M. Resende, J.T. Oden, T.E. Yankeelov, Math. Model. Methods Appl. Sci. 28, 61 (2018)

    Article  Google Scholar 

  • R. Santagiuliana, M. Ferrari, B.A. Schrefler, Comput. Methods Appl. Mech. Eng. 304, 197 (2016)

    Article  Google Scholar 

  • R. Santagiuliana, C. Stigliano, P. Mascheroni, M. Ferrari, P. Decuzzi, B.A. Schrefler, Adv. Model. Simul. Eng. Sci. 2, 19 (2015)

    Google Scholar 

  • G. Sciumè, W.G. Gray, F. Hussain, M. Ferrari, P. Decuzzi, B.A. Schrefler, Comput. Mech. 53, 465 (2014a)

    Article  MathSciNet  Google Scholar 

  • G. Sciumè, R. Santagiuliana, M. Ferrari, P. Decuzzi, B.A. Schrefler, Phys. Biol. 11, 65004 (2014b)

    Article  Google Scholar 

  • G. Sciumè, S. Shelton, W.G. Gray, C.T. Miller, F. Hussain, M. Ferrari, P. Decuzzi, B.A. Schrefler, New J. Phys. 15, 15005 (2013)

    Article  Google Scholar 

  • G. Vilanova, M. Burés, I. Colominas, H. Gomez, J. R. Soc. Interface 15, 20180415 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

B.A.S. gratefully acknowledges the support of the Technische Universität München - Institute for Advanced Study, funded by the German Excellence Initiative and the TUV SÜD Foundation. The authors acknowledge CITO Award, Houston Methodist Research Institute, Houston, NCI U54 CA210181. The authors affiliated to Serbian institutions also acknowledge support from Ministry of Education and Science of Serbia, grants OI 174028 and III 41007, and City of Kragujevac.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Santagiuliana.

Additional information

Dedicated to Mauro Ferrari in occasion of his 60th birthday

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santagiuliana, R., Milosevic, M., Milicevic, B. et al. Coupling tumor growth and bio distribution models. Biomed Microdevices 21, 33 (2019). https://doi.org/10.1007/s10544-019-0368-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-019-0368-y

Keywords

Navigation