Skip to main content
Log in

Evolution of seismic hazard maps in Turkey

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

A review on the historical evolution of seismic hazard maps in Turkey is followed by summarizing the important aspects of the updated national probabilistic seismic hazard maps. Comparisons with the predecessor probabilistic seismic hazard maps as well as the implications on the national design codes conclude the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. A relevant national example is the 2007 seismic design code (will be obsolete in 2018) that employs the 1996 national earthquake zonation map for the definition of earthquake induced lateral design loads.

  2. The official name of AFAD is Republic of Turkey Prime Ministry Disaster and Emergency Management Authority.

  3. TCIP is the abbreviation for Turkish Catastrophe Insurance Pool.

  4. The updated national seismic design code http://www.deprem.gov.tr/belgeler2016/tbdy.pdf will be in force by law in 2018.

  5. Reciprocal of mean annual exceedance rate of ground-motion intensity measure exceeding a certain threshold.

  6. The Ministry of Transportation published seismic design guidelines in 2007 (Official Gazette No.: 26617, 2007; Official Gazette No.: 27092, 2008) for the design of transportation networks. The guidelines include the 475- and 2475-year country-wide probabilistic seismic hazard maps for PSA at T = 0.2 s and T = 1.0 s at reference rock (VS30 = 760 m/s) to establish the design spectrum (Demircioğlu et al. 2007). Although these maps are passed by the legislation, their implementation is limited to the transportation facilities (e.g., railway, highway, seaport structures, airport structures). That’s why this article considers the probabilistic maps of T-SHM project as the revisions to the last earthquake zonation map that is based on the country-based PSHA by Gülkan et al. (1993).

  7. The 1981 Joyner and Boore ground-motion predictive model uses the earthquake records compiled from California. This predictive model estimates peak ground acceleration for maximum horizontal component and for moment magnitudes 5 ≤ Mw ≤ 7.7 and distances less than 370 km.

  8. Effective peak acceleration is a coefficient that controls the acceleration sensitive region (short-period spectral acceleration ordinates) in the design spectra of the 1997 and 2007 seismic design codes.

  9. Deep seismicity is only considered within the deep seismic activity regions in the Aegean and Cyprian subduction zones.

  10. PGA is not used in the design spectrum computation of the updated national seismic design code. However, it is for the design of earth retaining structures as well as for liquefaction and landslide susceptibility.

References

  • Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81:195–206

    Article  Google Scholar 

  • Akkar S, Çağnan Z (2010) A local ground-motion predictive model for Turkey, and its comparison with other regional and global ground-motion. Bull Seismol Soc Am 100:2978–2995

    Article  Google Scholar 

  • Akkar S, Sandikkaya MA, Bommer JJ (2014) Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull Earthq Eng 12:359–387

    Article  Google Scholar 

  • Akkar S, Kale Ö, Yakut A, Çeken U (2017) Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0101-2

  • Albini P, Musson RMW, Rovida A, Locati M, Gomez Capera AA, Viganò D (2014) The global earthquake history. Earthq Spectra 30(2):607–624

    Article  Google Scholar 

  • Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25(4):371–400

    Article  Google Scholar 

  • Anderson JG, Luco JE (1983) Consequences of slip rate constants on earthquake recurrence relations. Bull Seismol Soc Am 73:471–496

    Google Scholar 

  • Applied Technology Council (ATC) (1978) Tentative provisions for the development of seismic regulations in buildings, vol 510. National Bureau of Standards Special Publication, Washington

    Google Scholar 

  • Atkinson GM, Boore DM (2003) Empirical ground motion relations for subduction zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93:1703–1729

    Article  Google Scholar 

  • Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96:2181–2205

    Article  Google Scholar 

  • Ayhan E, Arslan E, Sancaklı N, Üçer SB (1984) Türkiye ve dolayları deprem kataloğu 1881–1980. Boğaziçi Üniversitesi, Istanbul

    Google Scholar 

  • Beyer K, Bommer JJ (2006) Relationships between median values and between aleatory variabilities for different definitions of the horizontal component of motion. Bull Seismol Soc Am 96:1512–1522

    Article  Google Scholar 

  • Bommer J, Spence R, Erdik M, Tabuchi S, Aydinoglu N, Booth E, Re D, Peterken O (2002) Development of an earthquake loss model for Turkish catastrophe insurance. J Seismol 6:431–466

    Article  Google Scholar 

  • Bommer JJ, Douglas J, Scherbaum F, Cotton F, Bungum H, Fäh D (2010) On the selection of ground-motion prediction equations for seismic hazard analysis. Seismol Res Lett 81:794–801

    Article  Google Scholar 

  • Boore DM, Joyner WB, Fumal TE (1997) Equations for estimating horizontal response spectra and peak acceleration from Western North American earthquakes: a summary of recent work. Seismol Res Lett 68(1):128–153

    Article  Google Scholar 

  • Campbell KW (1981) Near-source attenuation of peak horizontal acceleration. Bull Seismol Soc Am 71(6):2039–2070

    Google Scholar 

  • Campbell KW (1997) Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismol Res Lett 68(1):154–179

    Article  Google Scholar 

  • Campbell KW (2003) Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America. Bull Seismol Soc Am 93:1012–1033

    Article  Google Scholar 

  • Cauzzi C, Faccioli E (2008) Broadband (0.05–20 s) prediction of displacement response spectra based on worldwide digital records. J Seismol 12:453–475

    Article  Google Scholar 

  • Chiou BS-J, Youngs RR (2008) An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 24:173–215

    Article  Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to central Europe and rock sites. J Seismol 10:137–156

    Article  Google Scholar 

  • Demircioğlu MB, Şesetyan K, Durukal E, Erdik M (2007) Assessment of earthquake hazard in Turkey. In: Proceedings of the 4th international conference on earthquake geotechnical engineering, Thessaloniki, Greece

  • Demircioğlu MB, Şeşetyan K, Duman TY, Çan T, Tekin S, Ergintav S (2017) A probabilistic seismic hazard assessment for the Turkish territory: part II—fault source and background seismicity model. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0130-x

    Google Scholar 

  • Duman TY, Çan T, Emre Ö, Kadirioğlu FT, Başarır Baştürk N, Kılıç T, Arslan S, Özalp S, Kartal RF, Kalafat D, Karakaya F, Eroğlu Azak T, Özel NM, Ergintav S, Akkar S, Altınok Y, Tekin S, Cingöz A, Kurt Aİ (2016) Seismotectonics database of Turkey. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-9965-9

    Google Scholar 

  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F (2013) Active fault map of Turkey with an explanatory text 1:1.250.000 scale. General directorate of mineral research and exploration, Special Publication Series 30, p 89

  • Emre Ö, Duman TY, Özalp S, Olgun Ş, Elmacı H, Şaroğlu F, Çan T (2016) Active fault database of Turkey. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-0041-2

    Google Scholar 

  • Erdik M, Oner S (1982) A rational approach for the probabilistic assessment of the seismic risk associated with the North Anatolian Fault. In: Işıkara A, Vogel (eds) Multi-disciplinary approach to earthquake prediction. Vieweg, Brauschweig-Wiesbaden, p 115

    Chapter  Google Scholar 

  • Erdik M, Doyuran V, Gülkan P, Akçora G (1983) Probabilistic assessment of the seismic intensity in Turkey for the siting of nuclear power plants. In: Proceedings of the 2nd CSNI meeting on probabilistic methods in seismic risk assessment for nuclear power plants. Lawrence Livermore National Laboratory, Livermore

  • Erdik M, Doyuran V, Akkaş N, Gülkan P (1985a) A probabilistic assessment of the seismic hazard in Turkey. Tectonophysics 117:295–344

    Article  Google Scholar 

  • Erdik M, Doyuran V, Akkas N, Gülkan P (1985b) A probabilistic assessment of the seismic hazard in Turkey. Tectonophysics 117:195–344

    Article  Google Scholar 

  • Erdik M, Biro Y, Onur T, Şesetyan K, Birgören G (1999) Assessment of earthquake hazard in Turkey and neighboring regions—GSHAP. Ann Geofis 42(6):1125–1138

    Google Scholar 

  • Ergin K, Güçlü U, Uz Z (1967) Türkiye ve civarının deprem katalogu (Milattan Sonra 11 yılından 1964 sonuna kadar). İstanbul Teknik Üniversitesi, Maden Fakültesi Arz Fiziği Enstitüsü yayını, p 24 (in Turkish)

  • Ergin K, Güçlü U, Aksay G (1971) Türkiye ve dolaylarının deprem katalogu (1965–1970). İstanbul Teknik Üniversitesi, Maden Fakültesi Arz Fiziği Enstitüsü yayını, p 28

  • Eroglu Azak T (2016) The ECAT software package to analyze earthquake catalogues. In: International science and technology conference, 13–15 July, Vienna, Austria

  • Eroglu Azak T, Kalafat D, Şeşetyan K, Demircioğlu MB (2017) Effects of seismic declustering on seismic hazard assessment: a sensitivity study using the Turkish earthquake catalogue. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0174-y

    Google Scholar 

  • Eyidoğan H, Güçlü U (1993) Türkiye deprem bölgeleri haritasının evrimi ve yeni bir harita için öneri. Jeofizik 7:95–108 (in Turkish)

    Google Scholar 

  • Faccioli E, Villani M, Vanini M, Cauzzi C (2010) Mapping seismic hazard for the needs of displacement-based design: the case of Italy. Adv Perform Based Earthq Eng 13(1):3–14

    Article  Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the Central and Eastern United States. Seismol Res Lett 66:8–21

    Article  Google Scholar 

  • Garcia D, Singh SK, Harraiz M, Ordaz M, Pacheco JF (2005) Inslab earthquakes of Central Mexico: peak ground-motion parameters and response spectra. Bull Seismol Soc Am 95(6):2272–2282

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(15):1363–1367

    Google Scholar 

  • Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geofis 42(6):957–974

    Google Scholar 

  • Gülkan P, Koçyiğit A, Yücemen MS, Doyuran V, Başöz N (1993) En son verilere göre hazırlanan Türkiye deprem bölgeleri haritası. Earthquake Engineering Research Center Report No. 93-01, Department of Civil Engineering, Middle East Technical University, Ankara, Turkey (in Turkish)

  • Jimenez M, Giardini D, Grünthal G, Erdik M, Garcia-Fernandez M, Lapajne J, Makropoulos K, Musson R, Papaioannou Ch, Rebez A, Riad S, Sellami S, Shapira A, Slejko D, van Eck T, El Sayed A (2001) Unified seismic hazard modeling throughout the Mediterranean region. Bolletino di Geofisica Teorica ed Applicata 42:3–18

    Google Scholar 

  • Joyner WB, Boore DM (1981) Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71:2011–2038

    Google Scholar 

  • Kadirioğlu FT, Kartal RF (2016) The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turk J Earth Sci 25:303–310

    Google Scholar 

  • Kadirioğlu FT, Kartal RF, Kılıç T, Kalafat D, Duman TY, Eroğlu Azak T, Özalp S, Emre Ö (2016) An improved earthquake catalogue (M ≥ 4.0) for Turkey and its near vicinity (1900–2012). Bull Earthq Eng. https://doi.org/10.1007/s10518-016-0064-8

    Google Scholar 

  • Kale Ö, Akkar S (2013) A new procedure for selecting and ranking ground-motion prediction equations (GMPEs): the Euclidean distance-based ranking (EDR) method”. Bull Seismol Soc Am 103(2A):1069–1084

    Article  Google Scholar 

  • Kale Ö, Akkar S (2017) A ground-motion logic-tree scheme for regional seismic hazard studies. Earthq Spectra 33(3):837–856

    Article  Google Scholar 

  • Lin P-S, Lee C-T (2008) Ground-motion attenuation relationships for subduction zone earthquakes in northeastern Taiwan. Bull Seismol Soc Am 98:220–240

    Article  Google Scholar 

  • Megawati K, Pan T-C (2010) Ground-motion attenuation relationship for the Sumatran megathrust earthquakes. Earthq Eng Struct Dyn 39(8):827–845

    Google Scholar 

  • Mulargia F, Tinti S (1987) A procedure to identify objectively active seismotectonic structures. Bollettino Di Geofisica Teorica Ed Applicata 24(114):147–164

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Öcal N (1968a) Türkiye’nin sismisitesi ve zelzele coğrafyası (1850–1960) yılları için Türkiye zelzele katalogu. Milli Eğitim Bakanlığı İstanbul Kandilli Rasathanesi Sismoloji Yayınları, vol 8, Sayfa 119 (in Turkish)

  • Öcal N (1968b) Beş yıllık zelzele katalogu (1960–1964) Milli Eğitim Bakanlığı İstanbul Kandilli Rasathanesi Sismoloji Yayınları, vol 9, Sayfa 24 (in Turkish)

  • Omote S, İpek M (1959) Türkiye’nin Sismisitesi. İTÜ Sismoloji Enstitüsü Yayını, p 19

  • Onur T (1997) Earthquake hazard in Turkey based on spectral acceleration amplitudes. M.Sc. Thesis, Boğaziçi University, p 160

  • Özmen B (2012) Türkiye deprem bölgeleri haritalarının tarihsel gelişimi. Türkiye Jeoloji Bülteni 55(1):43–55 (in Turkish)

    Google Scholar 

  • Pamir HN (1948) Dinamik Jeoloji, vol 2. İstanbul University Publications, Istanbul, pp 348–404 (in Turkish)

    Google Scholar 

  • Pınar N, Lahn E (1952) Türkiye depremleri izahlı kataloğu. Bayındırlık Bakanlığı Yapı ve İmar İşleri Reisliği Yayını, Seri no: 6, Sayı: 36, 153 (in Turkish)

  • Sadigh K, Chang CY, Egan JA, Makdisi F, Youngs RR (1997) Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismol Res Lett 68:180–189

    Article  Google Scholar 

  • Scherbaum F, Cotton F, Smit P (2004) On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: the case of rock motion. Bull Seismol Soc Am 94:2164–2185

    Article  Google Scholar 

  • Scherbaum F, Delavaud E, Riggelsen C (2009) Model selection in seismic hazard analysis: an information-theoretic perspective. Bull Seismol Soc Am 99:3234–3247

    Article  Google Scholar 

  • Schnabel PB, Seed HB (1973) Accelerations in rock for earthquakes in the western United States. Bull Seismol Soc Am 63(2):501–516

    Google Scholar 

  • Şeşetyan K, Demircioğlu MB, Duman T, Çan T, Tekin S, Eroğlu T, Zulfikar Fercan Ö (2016) A probabilistic seismic hazard assessment for the Turkish territory—part I: the area source model. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-0005-6

    Google Scholar 

  • Şeşetyan K, Danciu L, Demircioglu M, Giardini D, Erdik M, Akkar S, Gülen L, Zare M, Adamia S, Ansari A, Arakelian A, Gündoğan Askan A, Avanessian M, Babayan H, Chelidze T, Durgaryan R, Elias A, Hamzehloo H, Hessami K, Kalafat D, Kale Ö, Karakhanian A, Khan AM, Mamadli T, Al-Qaryouti M, Sayab M, Tsereteli N, Utkucu M, Yalçın H, Yılmaz MT (2018) The 2014 seismic hazard model of the Middle East: overview and results. Bull Earthq Eng. https://doi.org/10.1007/s10518-018-0346-4

  • Sieberg A (1932) Erdbebengeographie, vol Band IV, Lieferung 3. Verlag von Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Soyluk A, Harmankaya ZY (2012) Examination of earthquake resistant design in the education of architecture. Proc Soc Behav Sci 51:1080–1086

    Article  Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound 759 area and its effect on statistical estimates of earthquake hazard. In: Proceedings of the international conference on Microzonation, pp 897–910

  • Stewart JP, Douglas J, Javanbarg M, Bozorgnia Y, Abrahamson NA, Boore DM, Campbell KW, Delavaud E, Erdik M, Stafford PJ (2015) Selection of ground motion prediction equations for the global earthquake model. Earthq Spectra 31(1):19–45

    Article  Google Scholar 

  • Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Živčić M, Albini P, Batllo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European earthquake catalogue (SHEEC) 1000–1899. J Seismol 17(2):523–544

    Article  Google Scholar 

  • Tabban A (1970) Seismicity of Turkey. Bull Int Inst Seismol Earthq Eng 6:59–71

    Google Scholar 

  • Toro GR (2002) Modification of the Toro et al. (1997) attenuation equations for large magnitudes and short distances. Risk Eng Inc 4-1–4-10

  • Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismol Res Lettt 68:41–57

    Article  Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346

    Google Scholar 

  • Woessner J, Laurentiu D, Giardini D, Crowley H, Cotton F, Grünthal G, Valensise G, Arvidsson R, Basili R, Demircioğlu MB, Hiemer S, Meletti C, Musson RW, Rovida AN, Şesetyan K, Stucchi M, SHARE Consortium (2015) The 2013 European seismic hazard model: key components and results. Bull Earthq Eng 13(12):3553–3596

    Article  Google Scholar 

  • Yarar R, Ergünay O, Erdik M, Gülkan P (1980) A preliminary probabilistic assessment of the seismic hazard in Turkey. Proc Seventh World Conf Earthq Eng Istanb 1:309–316

    Google Scholar 

  • Youngs RR, Coppersmith KJ (1985) Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am 75(4):939–964

    Google Scholar 

  • Youngs RR, Chiou BS-J, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68:58–73

    Article  Google Scholar 

  • Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Khan MA, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772

    Article  Google Scholar 

  • Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006) Attenuation relations of strong ground motion in Japan using site classifications based on predominant period. Bull Seismol Soc Am 96:898–913

    Article  Google Scholar 

Download references

Acknowledgements

T-SHM project is granted by AFAD and financially supported by TCIP. The members of this project (the co-authors of this paper) express their sincere gratitude to the administrations of these two entities, in particular the currently acting and former presidents of AFAD Dr. Mehmet Güllüoğlu, Mr. Halis Bilden and Dr. Fuad Oktay; the acting and former directors of AFAD Earthquake Department Dr. Murat Nurlu and Mr. Ulubey Çeken; the AFAD project coordination team Mrs. Nazan Yılmaz Kılıç, Mrs. İlknur Dalyan and Mr. Cenk Erkmen; the deputy director general of TCIP Mr. İsmet Güngör and the general secretary of TCIP Mrs. Serpil Öztürk. The valuable comments of the project reviewers are also greatly appreciated by the project team. This paper is reviewed by Professor Julian J. Bommer at Imperial College and Professor Abdullah Sandıkkaya at Hacettepe University. Their comments improved some of the discussions and illustrations in the paper. Finally, the first author appreciates the help of Prof. Şeşetyan in the preparation of Table 1 as well as Professor Özkan Kale and Mrs. Senem Tekin for the preparation/improvement of many figures in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkar, S., Azak, T., Çan, T. et al. Evolution of seismic hazard maps in Turkey. Bull Earthquake Eng 16, 3197–3228 (2018). https://doi.org/10.1007/s10518-018-0349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0349-1

Keywords

Navigation