Skip to main content
Log in

Ecophysiology of the Actinobacteria in activated sludge systems

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This review considers what is known about the Actinobacteria in activated sludge systems, their abundance and their functional roles there. Participation in processes leading to the microbiological removal of phosphate and in the operational problems of bulking and foaming are discussed in terms of their ecophysiological traits. We consider critically whether elucidation of their nutritional requirements and other physiological properties allow us to understand better what might affect their survival capabilities in these highly competitive systems. Furthermore, how this information might allow us to improve how these processes work is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71:8966–8969

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887

    Article  PubMed  CAS  Google Scholar 

  • Amann R, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24:555–565

    Article  PubMed  CAS  Google Scholar 

  • Amann R, Ludwig W, Schleifer K H (1995) Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Andreasen K, Nielsen PH (1997) Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Appl Environ Microbiol 63:3662–3668

    PubMed  CAS  Google Scholar 

  • Andreasen K, Nielsen PH (2000) Growth of Microthrix parvicella in nutrient removal activated sludge plants: studies of in situ physiology. Water Res 34:1559–1569

    Article  CAS  Google Scholar 

  • Beer M, Stratton H M, Griffiths P C, Seviour R J (2006) Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia? J Appl Microbiol 100:233–243

    Article  PubMed  CAS  Google Scholar 

  • Blackall LL, Seviour EM, Cunningham M, Seviour RJ, Hugenholtz P (1994) “Microthrix parvicella” is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol 59:513–518

    Google Scholar 

  • Blackall LL, Seviour EM, Bradford D, Rossetti S, Tandoi V, Seviour RJ (2000) ‘Candidatus Nostocoida limicola’, a filamentous bacterium from activated sludge. Int J Syst Evol Microbiol 50:703–709

    PubMed  CAS  Google Scholar 

  • Blackall LL, Crocetti G, Saunders AM, Bond PL (2002) A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Ant Van Leeuwenhoek 81:681–691

    Article  CAS  Google Scholar 

  • Bond PL, Erhart R, Wagner M, Keller J, Blackall LL (1999) Identification of some of the major groups of bacteria in efficient and non-efficient biological phosphorous removal activated sludge systems. Appl Environ Microbiol 65:4077–4084

    PubMed  CAS  Google Scholar 

  • Carr EL, Eales K, Soddell J, Seviour RJ (2005) Improved permeabilization protocols for fluorescence in situ hybridization (FISH) of mycolic-acid-containing bacteria found in foams. J Microbiol Meth 61:47–54

    Article  CAS  Google Scholar 

  • Carr EL, Eales KL, Seviour RJ (2006) Substrate uptake by Gordonia amarae in activated sludge foams by FISH-MAR. Water Sci Technol 54:39–45

    PubMed  CAS  Google Scholar 

  • Christensson M, Blackall LL, Welander T (1998) Metabolic transformation and characterization of the sludge community in an enhanced biological phosphorus removal system. Appl Microbiol Biotechnol 99:226–234

    Article  Google Scholar 

  • Crocetti GR, Hugenholtz P, Bond PL, Schuler A, Keller J Jenkins D, Blackall LL (2000) Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Blackall LL, Kang SO, Hah YC, Goodfellow M (1997) A proposal to reclassify Nocardia pinensis Blackall et al as Skermania piniformis gen. nov., comb. nov. Int J Syst Bacteriol 47:127–131

    PubMed  CAS  Google Scholar 

  • Davenport RJ, Curtis TP, Goodfellow M, Stainsby FM, Bingley M (2000) Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants. Appl Environ Microbiol 66:1158–1166

    Article  PubMed  CAS  Google Scholar 

  • de los Reyes FL, Rothauszky D, Raskin L (2002) Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants. Water Environ Res 74:437–449

    Article  Google Scholar 

  • Eales K, Nielsen JL, Kragelund C, Seviour R, Nielsen PH (2005) The in situ physiology of pine tree like organisms (PTLO) in activated sludge foams. Acta hydrochim hydrobiol 33:203–209

    Article  CAS  Google Scholar 

  • Eales KL, Nielsen JL, Seviour EM, Nielsen PH, Seviour RJ (2006) The in situ physiology of Skermania piniformis in foams in Australian activated sludge plants. Environ Microbiol 8:1712–1720

    Article  PubMed  CAS  Google Scholar 

  • Erhart R, Bradford D, Seviour RJ, Amann RI, Blackall LL (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Syst Appl Microbiol 20:310–318

    Google Scholar 

  • Eschenhagen M, Schuppler M, Roske I (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res 37:3224–3232

    Article  PubMed  CAS  Google Scholar 

  • Figuerola ELM, Erijman L (2007) Bacterial taxa abundance pattern in an industrial wastewater treatment system determined by the full rRNA cycle approach. Environ Microbiol 9:1780–1789

    Article  PubMed  CAS  Google Scholar 

  • Frigon D, Guthrie RM, Bachman GT, Royer J, Bailey B, Raskin L (2006) Long-term analysis of a full-scale activated sludge wastewater treatment system exhibiting seasonal biological foaming. Water Res 40:990–1008

    Article  PubMed  CAS  Google Scholar 

  • Grady CPL, Daigger GT, Lim HC (1999) Biological waste water treatment. Marcel Dekker, New York

    Google Scholar 

  • Hanada S, Liu WT, Shintani T, Kamagata Y, Nakamura K (2002) Tetrasphaera elongata sp nov., a polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 52:883–887

    Article  PubMed  CAS  Google Scholar 

  • Hesselsoe M, Nielsen JL, Roslev P, Nielsen PH (2005) Isotope labeling and microautoradiography and active heterotrophic bacteria on the basis of assimilation of 14CO2. Appl Environ Microbiol 71:646–655

    Article  PubMed  CAS  Google Scholar 

  • Jenkins D, Richard MG, Daigger GT (2004) Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems, 3rd edn. IWA Publishing, London

    Google Scholar 

  • Kawaharasaki M, Tanaka H, Kanagawa T, Nakamura K (1999) In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4′,6-diamidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res 33:257–265

    Article  CAS  Google Scholar 

  • Kong Y, Beer M, Seviour RJ, Lindrea KC, Rees GN (2001) Structure and functional analysis of the microbial community in an aerobic:anaerobic sequencing batch reactor (SBR) with no phosphorous removal. Syst Appl Microbiol 24:597–609

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Nielsen JL, Nielsen PH (2004) Microautoradiographic study of Rhodocyclus-related polyphosphate accumulating bacteria in full-scale enhanced biological phosphorous removal plants. Appl Environ Microbiol 70:5383–5390

    Article  PubMed  CAS  Google Scholar 

  • Kong YH, Nielsen JL, Nielsen PH (2005) Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 71:4076–4085

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Xia Y, Nielsen JL, Nielsen PH (2007) Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology (UK) 153:4061–4073

    CAS  Google Scholar 

  • Kragelund C, Nielsen JL, Thomsen TR, Nielsen PH (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS Microbiol Ecol 54:111–122

    Article  PubMed  CAS  Google Scholar 

  • Kragelund C, Kong Y, van der Waarde J, Thelen K, Eikelboom D, Tandoi V, Thomsen TR, Nielsen PH (2006) Ecophysiology of different filamentous Alphaproteobacteria species from industrial waste water treatment plants. Microbiology (UK) 152:3003–3012

    Google Scholar 

  • Kragelund C, Nilsson B, Eskilsson K, Bögh AM, Nielsen PH (2007a) Control of filamentous foam formers by chemical addition. In: Hahn H, Hoffmann E, Ødegaard H (eds) Proceeding of the 12th Gothenburg symposium, Ljubliana, Slovenia, May 20–23, pp 83–92

  • Kragelund C, Remesova Z, Nielsen JL, Thomsen TR, Eales K, Seviour R, Wanner J, Nielsen PH (2007b) Ecophysiology of mycolic acid-containing Actinobacteria (mycolata) in activated sludge foams. FEMS Microbiol Ecol 61:174–184

    Article  PubMed  CAS  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1974) Nocardia amarae sp. nov., an actinomycete common in foaming activated sludge. Int J Syst Bacteriol 24:278–288

    Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    PubMed  CAS  Google Scholar 

  • Lee N, Nielsen PH, Aspegren H, Henze M, Schleifer KH, La Cour Jansen J (2003) Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorous removal operated with and without nitrogen removal. System Appl Microbiol 26:211–227

    Article  CAS  Google Scholar 

  • Levantesi C, Rossetti S, Thelen K, Kragelund C, Krooneman J, Eikelboom D, Nielsen PH, Tandoi V (2006) Phylogeny, physiology and distribution of ‘Candidatus Microthrix calida’, a new Microthrix species isolated from industrial activated sludge wastewater treatment plants. Environ Microbiol 8:1552–1563

    Article  PubMed  CAS  Google Scholar 

  • Lindrea KC, Seviour RJ (2002) Activated sludge—the process. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 74–80

    Google Scholar 

  • Liu W-T, Nielsen AT, Wu J-H, Tsai C-S,Matsuo Y, Molin S (2001) In situ identification of polyphosphate and polyhydroxyalkanoate accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol 3:100–122

    Article  Google Scholar 

  • Loy A, Horn M, Wagner M (2003) ProbeBase—an online resource for rRNA-targeted oligonucleotide probes Nucleic. Acids Res 31:514–516

    Article  CAS  Google Scholar 

  • Majone M, Tandoi V (2002) Storage polymers: role in the ecology of activated sludge. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York

    Google Scholar 

  • Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge—a critical review. Water Res 38:793–817

    Article  PubMed  CAS  Google Scholar 

  • Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Rees GN (1999) Tessaracoccus bendigoensis gen. nov., sp. nov., a gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 49:459–468

    PubMed  CAS  Google Scholar 

  • Maszenan AM, Seviour RJ, Patel BKC, Schumann P, Burghardt J, Tokiwa Y, Stratton HM (2000) Three isolates of novel polyphosphate-accumulating Gram-positive cocci, obtained from activated sludge, belong to a new genus, Tetrasphaera gen. nov., and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensis sp. nov. Int J Syst Evol Microbiol 50:593–603

    PubMed  CAS  Google Scholar 

  • McKenzie CM, Seviour EM, Schumann P, Maszenan AM, Liu JR, Webb RI , Monis P, Saint CP, Steiner U, Seviour RJ (2006) Isolates of ‘Candidatus Nostocoida limicola’ Blackall et al. 2000 should be described as three novel species of the genus Tetrasphaera, as Tetrasphaera jenkinsii sp. nov., Tetrasphaera vanveenii sp. nov. and Tetrasphaera veronensis sp. nov. Int J Syst Evol Microbiol 56:2279–2290

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Hiraishi A, Yoshimi Y, Kawaharasaki M, Masuda K, Kamagata Y (1995) Microlunatus phosphovorus gen. nov., sp. nov., a new gram positive polyphosphate accumulating bacterium isolated from activated sludge. Int J Syst Bacteriol 45:17–22

    PubMed  CAS  Google Scholar 

  • Macnaughton SJ, O’Donnell AG, Embley TM (1994) Permeabilization of mycolic-acid-containing actinomycetes for in situ hybridization with fluorescently labelled oligonucleotide probes. Microbiology 140:2859–2865

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. The ISME J 1:103–110

    Article  CAS  Google Scholar 

  • Nielsen JL, Nielsen PH (2005) Advances in microscopy: microautoradiography of single cells. In: Leadbetter JR (ed) Methods in enzymology vol 397. Academic Press, San Diego, p 237

    Google Scholar 

  • Nielsen JL, Mikkelsen LH, Nielsen PH (2001) In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci Technol 43:97–103

    PubMed  CAS  Google Scholar 

  • Nielsen PH, Roslev P, Dueholm TE, Nielsen JL (2002) Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants. Water Sci Technol 46:73–80

    PubMed  CAS  Google Scholar 

  • Nielsen JL, Aquino de Muro M, Nielsen PH (2003a) Determination of viability of filamentous bacteria in activated sludge by simultaneous use of MAR, FISH and reduction of CTC. Appl Environ Microbiol 69:641–643

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JL, Christensen D, Kloppenborg M, Nielsen PH (2003b) Quantification of cell-specific substrate uptake by probe-defined bacteria under in  situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202–211

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PH, Kragelund C, Nielsen JL, Tiro S, Lebek M, Rosenwinkel KH, Gessesse A (2005) Control of Microthrix parvicella in activated sludge plants by dosage of polyaluminium salts: possible mechanisms. Acta hydrochim hydrobiol 33:255–261

    Article  CAS  Google Scholar 

  • Oehmen A, Lemos PC, Carvalho G, Yuan Z, Keller J, Blackall LL, Reis MAM (2007) Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res 41:2271–2300

    Article  PubMed  CAS  Google Scholar 

  • Oerther DB, de los Reyes FL, Hernandez M, Raskin L (1999) Simultaneous oligonucleotide probe hybridization and immunostaining for in situ detection of Gordona species in activated sludge. FEMS Microbiol Ecol 29:129–136

    Article  CAS  Google Scholar 

  • Polaczyk A, Kinkle B, Papautsky I, Oerther DB (2006) Culture-based device to track Gordonia in activated sludge. Environ Sci Technol 40:2269–2274

    Article  PubMed  CAS  Google Scholar 

  • Roels T, Dauwe F, Van Damme S, De Wilde K, Roelandt F (2002) The influence of PAX-14 on activated sludge systems and in particular on Microthrix parvicella. Water Sci Technol 46:487–490

    PubMed  CAS  Google Scholar 

  • Roller C, Wagner M, Amann R, Ludwig W, Schleifer KH (1994) In situ probing of gram positive bacteria with high G + C content using 23S rRNA-targeted oligonucleotide probes. Microbiology (UK) 140:2849–2858

    Article  CAS  Google Scholar 

  • Rossetti S, Tomei MC, Nielsen PH , Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64

    Article  PubMed  CAS  Google Scholar 

  • Santos MM, Lemos PC, Reis MAM, Santos H (1999) Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl Environ Microbiol 65:3920–3928

    PubMed  CAS  Google Scholar 

  • Seviour RJ, Blackall LL (1998) The microbiology of activated sludge. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Seviour RJ, Maszenan AM, Soddell JA, Tandoi V, Patel BKC, Kong Y, Schumann P (2000) Microbiology of the ‘G-bacteria’ in activated sludge-minireview. Environ Microbiol 2:581–593

    Article  PubMed  CAS  Google Scholar 

  • Seviour RJ, Liu JR, Seviour EM, McKenzie CA, Blackall LL, Saint CP (2002) The “Nostocoida limicola” story: resolving the phylogeny of this morphotype responsible for bulking in activated sludge. Water Sci Technol 46:105–110

    PubMed  CAS  Google Scholar 

  • Seviour RJ, Mino T, Onuki M (2003) The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127

    Article  PubMed  CAS  Google Scholar 

  • Seviour EM, Eales K, Izzard L, Beer M, Carr EL, Seviour RJ (2006) The in situ physiology of “Nostocoida limicola” II, a filamentous bacterial morphotype in bulking activated sludge, using fluorescence in situ hybridization and microautoradiography. Water Sci Technol 54:47–53

    PubMed  CAS  Google Scholar 

  • Snaidr J, Amann R, Huber I, Ludwig W, Schleifer KH (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896

    PubMed  CAS  Google Scholar 

  • Snaidr J, Beimfohr C, Levantesi C, Rossetti S, van der Waarde J, Geurkink B, Eikelboom D, Lemaitre M, Tandoi V (2002) Phylogenetic analysis and in situ identification of “Nostocoida limicola”-like filamentous bacteria in activated sludge from industrial wastewater treatment plants. Water Sci Technol 46:99–104

    PubMed  CAS  Google Scholar 

  • Soddell J A (2002) Activated sludge-foaming. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1–4

    Google Scholar 

  • Soddell JA, Seviour RJ (1990) Microbiology of foaming in activated-sludge plants. J Appl Bacteriol 69:145–176

    CAS  Google Scholar 

  • Soddell JA, Seviour RJ (1998) Numerical taxonomy of Skermania piniformis and related isolates from activated sludge. J Appl Microbiol 84:272–284

    Article  Google Scholar 

  • Soddell JA, Seviour RJ, Blackall LL, Hugenholtz P (1998) New foam-forming nocardioforms found in activated sludge. Water Sci Technol 37:495–502

    Article  CAS  Google Scholar 

  • Soddell JA, Stainsby FM, Eales KL, Kroppenstedt RM, Seviour RJ, Goodfellow M (2006) Millisia brevis gen. nov., sp nov., an actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 56:739–744

    Article  PubMed  CAS  Google Scholar 

  • Tandoi V, Jenkins D, Wanner J (2006) Activated sludge separation problems. IWA Publishing, London

    Google Scholar 

  • Thomas JA, Soddell JA, Kurtboke DI (2002) Fighting foam with phages? Water Sci Technol 46:511–518

    PubMed  CAS  Google Scholar 

  • van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Importance of bacterial storage polymers in bioprocesses. Water Sci Technol 35(1):41–47

    Article  Google Scholar 

  • Wagner AM, Cloete ET (2002) 16S rRNA sequence analysis of bacteria present in foaming activated sludge. Syst Appl Microbiol 25:434–439

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Amann R, Lemmer H, Schleifer KH (1993) Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520–1525

    PubMed  CAS  Google Scholar 

  • Wagner M, Loy A, Nogueira R (2002) Microbial community composition and function in wastewater treatment plants. Ant van Leeuwen 81:665–680

    Article  CAS  Google Scholar 

  • Wagner M, Nielsen PH, Loy A (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol 17:1–9

    Article  CAS  Google Scholar 

  • Wanner J (2006) AS separation problems. In: Tandoi V, Jenkins D, Wanner J (eds) Activated sludge separation problems—theory, control measures, practical experience. IWA Publishing, London, p 35

    Google Scholar 

  • Wong MT, Mino T, Seviour RJ, Onuki M, Liu WT (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res 39:2901–2914

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Kong Y, Nielsen PH (2007) In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol Ecol 60:156–165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Seviour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seviour, R.J., Kragelund, C., Kong, Y. et al. Ecophysiology of the Actinobacteria in activated sludge systems. Antonie van Leeuwenhoek 94, 21–33 (2008). https://doi.org/10.1007/s10482-008-9226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-008-9226-2

Keywords

Navigation