Skip to main content
Log in

Effects of lubrication in the oblique stagnation-point flow of a nanofluid

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This study investigates the oblique flow of a nanofluid near a stagnation point past a lubricated plate. A power-law fluid is utilized for lubrication. A suitable set of transformation is utilized to obtain system of dimensionless governing equations. A well-known numerical technique known as Keller-box method is employed to get the similar solution. Influence of emerging parameters on the flow characteristics has been discussed in the presence of lubrication through graphs and numerical data ranging from no slip (\(\beta \to \infty )\) to full slip (\(\beta \to 0)\). Impact of thermophoresis and Brownian motion is further investigated. A comparison in the special cases between the present and published data validates this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(Q\) :

Flow rate

\(T_{\text{w}}\) :

Wall temperature

\(T_{\infty }\) :

Free stream temperature

\(T\) :

Fluid temperature

\(\delta\) :

Thickness of lubrication layer

\(C\) :

Concentration of nanoparticles

\(x,y\) :

Rectangular coordinates

\(u,v\) :

Velocity components in \(x\) and \(y\) directions for nanofluid

\(k\) :

Consistency coefficient

\(\rho_{\text{f}}\) :

Density of base fluid

\(D_{\text{B}}\) :

Brownian diffusion coefficient

\(\alpha\) :

Boundary layer displacement

\(\lambda\) :

Free parameter

\(N_{\text{b}}\) :

Brownian motion parameter

\(\eta\) :

Dimensionless independent variable

\(L_{\text{visc}}\) :

Viscous length scale

\(C_{\text{w}}\) :

Concentration at wall

\(u_{e} , v_{e}\) :

Free stream velocities

\(C_{\infty }\) :

Concentration at free stream

\(\beta\) :

Slip (lubrication) parameter

\(\mu_{L}\) :

Apparent viscosity

\(D_{\text{T}}\) :

Thermophoresis diffusion coefficient

\(N_{\text{t}}\) :

Thermophoresis parameter

\(U,V\) :

Velocity components in \(x\) and \(y\) directions for a power-law fluid

\(n\) :

Flow behavior index

\(\rho_{\text{p}}\) :

Density of nanoparticles

\(\nu\) :

Kinematic viscosity

\(\alpha^{*}\) :

Thermal diffusivity

\(\gamma\) :

Shear at free stream

\(\phi\) :

Dimensionless concentration

\(Pr\) :

Prandtl number

\(\theta\) :

Dimensionless temperature

\(f,g\) :

Dimensionless velocities

\(L_{\text{lub}}\) :

Lubrication length scale

References

  • Ahmad K, Nazar R (2010) Unsteady MHD mixed convection stagnation-point flow of a viscoelastic fluid on a vertical surface. J Quart Meas Anal 6:105–117

    Google Scholar 

  • Blyth MG, Pozrikidis C (2005) Stagnation-point flow against a liquid film on a plane wall. Acta Mech 180:203–219

    Article  MATH  Google Scholar 

  • Borrelli A, Giantesio G, Patria MC (2012) MHD oblique stagnation-point flow of a Newtonian fluid. ZAMP 63:271–294

    Article  MathSciNet  MATH  Google Scholar 

  • Bradshaw P, Cebeci T, Whitelaw JH (1981) Engineering calculation methods for turbulent flows. Academic, London

    MATH  Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  • Buongiorno J et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Article  Google Scholar 

  • Cebeci T, Bradshaw P (1984) Physical and computational aspects of convective heat transfer. Springer, New York

    Book  MATH  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng 66:99–105

    Google Scholar 

  • Dalkilic AS, Kayaci N, Celen A, Tabatabaei M, Yildiz O, Daungthongsuk W, Wongwises S (2012) Forced convective heat transfer of nanofluids: a review of the recent literature. Curr Nanosci 8:949–969

    Article  Google Scholar 

  • Das SK, Choi SUS, Yu W (2007) Nanofluids, science and technology. Wiley, Hoboken

    Book  Google Scholar 

  • Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer nanofluids. Renew Sustain Eng Rev 11:797–817

    Article  Google Scholar 

  • Dorrepaal JM (1986) An exact solution of the Navier–Stokes equation which describes non-orthogonal stagnation-point flow in two dimensions. J Fluid Mech 163:141–147

    Article  MathSciNet  MATH  Google Scholar 

  • Dorrepaal JM (2000) Is two-dimensional oblique stagnation point flow unique? Can Appl Math Q 8:61–66

    Article  MathSciNet  MATH  Google Scholar 

  • Drazin P, Riley N (2006) The Navier–Stokes equations: a classification of flows and exact solutions. Lond Math Soc Lect Note Ser 334:1–196

    MathSciNet  MATH  Google Scholar 

  • Ghaffari A, Javed T, Labropulu F (2015) Oblique stagnation point flow of a non-Newtonian nanofluid over stretching surface with radiation: a numerical study. Therm Sci. doi:10.2298/TSCI150411163G

    Google Scholar 

  • Ghaffari A, Javed T, Majeed A (2016) Influence of radiation on non-Newtonian fluid in the region of oblique stagnation point flow in a porous medium: a numerical study. Transp Porous Med 113:245–266

    Article  MathSciNet  Google Scholar 

  • Javed T, Ghaffari A, Ahmad H (2015) Numerical study of unsteady MHD oblique stagnation point flow with heat transfer over an oscillating flat plate. Can J Phys 93:1138–1143

    Article  Google Scholar 

  • Kakac S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  • Keller HB (1970) A new difference scheme for parabolic problems. In: Bramble J (ed) Numerical solution of partial-differential equations, vol II. Academic, New York

    Google Scholar 

  • Keller HB, Cebeci T (1972) Accurate numerical methods for boundary layer flows II: two dimensional turbulent flows. AIAA J 10:1193–1199

    Article  MathSciNet  MATH  Google Scholar 

  • Labropulu F, Ghaffar A (2014) Oblique Newtonian fluid flow with heat transfer towards a stretching sheet. Comput Probl Eng 307:93–103

    Google Scholar 

  • Labropulu F, Li D (2008) Stagnation-point flow of a second grade fluid with slip. Int J Non-Linear Mech 43:941–947

    Article  Google Scholar 

  • Lok YY, Amin N, Pop I (2006) Non-orthogonal stagnation-point flow towards a stretching sheet. Int J Non-Linear Mech 41:622–627

    Article  Google Scholar 

  • Lok YY, Merkin JH, Pop I (2015) MHD oblique stagnation-point flow towards a stretching/shrinking surface. Meccanica 50:2949–2961

    Article  MathSciNet  MATH  Google Scholar 

  • Mahmood K, Sajid M, Ali N (2016a) Non-orthogonal stagnation-point flow of a second-grade fluid past a lubricated surface. ZNA 71:273–280

    Google Scholar 

  • Mahmood K, Sajid M, Ali N, Javed T (2016b) Slip flow of a second grade fluid past a lubricated rotating disc. Int J Phys Sci 11:96–103

    Article  Google Scholar 

  • Mahmood K, Sajid M, Ali N, Javed T (2016c) Heat transfer analysis in the time-dependent slip flow over a lubricated surface. Eng Sci Technol Int J 19:1949–1957

    Article  Google Scholar 

  • Mahmood K, Sajid M, Ali N, Javed T (2016d) Heat transfer analysis in the time-dependent axisymmetric stagnation point flow over a lubricated surface. Therm Sci. doi:10.2298/TSCI160203257M

    Google Scholar 

  • Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R (2011) Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sustain Eng Rev 15:1502–1512

    Article  Google Scholar 

  • Sajid M, Mahmood K, Abbas Z (2012) Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface. Chin Phys Lett 29:024702

    Article  Google Scholar 

  • Santra B, Dandapat BS, Andersson HI (2007) Axisymmetric stagnation-point flow over a lubricated surface. Acta Mech 194:1–10

    Article  MATH  Google Scholar 

  • Stuart JT (1959) The viscous flow near a stagnation point when the external flow has uniform vorticity. J Aerosp Sci 26:124–125

    Article  MATH  Google Scholar 

  • Tamada KJ (1979) Two-dimensional stagnation-point flow impinging obliquely on a plane wall. J Phys Soc Jpn 46:310–311

    Article  Google Scholar 

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362

    Article  Google Scholar 

  • Tilley BS, Weidman PD (1998) Oblique two-fluid stagnation-point flow. Eur J Mech 17:205–217

    Article  MathSciNet  MATH  Google Scholar 

  • Tooke RM, Blyth MG (2008) A note on oblique stagnation-point flow. Phys Fluids 20:033101

    Article  MATH  Google Scholar 

  • Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Eng Rev 11:512–523

    Article  Google Scholar 

  • Wang CY (2003) Stagnation flows with slip: exact solution of the Navier–Stokes equations. Z Angew Math Phys 54:184–189

    Article  MathSciNet  MATH  Google Scholar 

  • Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–16

    Article  Google Scholar 

  • Wang XQ, Mujumdar AS (2008a) A review on nanofluids—part I: theoretical and numerical investigations. Braz J Chem Eng 25:613–630

    Article  Google Scholar 

  • Wang XQ, Mujumdar AS (2008b) A review on nanofluids—part II: experiments and applications. Braz J Chem Eng 25:631–648

    Article  Google Scholar 

  • Weidman PD, Putkaradze V (2003) Axisymmetric stagnation flow obliquely impinging on a circular cylinder. Eur J Mech B 22:123–131

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mahmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, K., Sajid, M., Ali, N. et al. Effects of lubrication in the oblique stagnation-point flow of a nanofluid. Microfluid Nanofluid 21, 100 (2017). https://doi.org/10.1007/s10404-017-1934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1934-3

Keywords

Navigation