Skip to main content

Advertisement

Log in

Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the progressive changes of circumpapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses measured by spectral-domain optical coherence tomography (Cirrus SD-OCT) in open-angle glaucoma.

Methods

One hundred-fourteen eyes of open-angle glaucoma patients with localized RNFL defect who had 3 years’ worth of annual RNFL photography and OCT measurements were enrolled in this retrospective study. The progression rates of serial RNFL and GCIPL thicknesses (µm), angular width (°) and area (mm2) of defect on RNFL and GCIPL deviation maps were determined by linear mixed-effect models.

Results

Over a mean follow-up period of 3.16 years, 50 patients out of a total of 114 patients were classified as progressors based on the structural evaluation. The progressors showed significantly higher progression rates in average, 6 and 11 o’clock sector RNFL thicknesses, angular width and area of defect in RNFL deviation map, as well as inferotemporal and minimum GCIPL thicknesses than the non-progressors. The thicknesses of the 6 o’clock sector RNFL and minimum GCIPL exhibited the highest reduction rates among the RNFL and GCIPL parameters assessed, respectively.

Conclusions

When evaluating glaucoma progression by OCT, careful observation of the average, 6 and 11 o’clock sectors in RNFL and inferotemporal and minimum GCIPL thicknesses can be helpful. We can effectively assess early changes of glaucoma progression with GCIPL thickness as well as RNFL thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.

    Article  CAS  PubMed  Google Scholar 

  2. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13 (discussion 829–830).

    Article  PubMed  Google Scholar 

  3. Leske MC, Heijl A, Hyman L, Bengtsson B. Early Manifest Glaucoma Trial: design and baseline data. Ophthalmology. 1999;106:2144–53.

    Article  CAS  PubMed  Google Scholar 

  4. Chang RT, Budenz DL. Diagnosing glaucoma progression. Int Ophthalmol Clin. 2008;48:13–28.

    Article  PubMed  Google Scholar 

  5. Weinreb RN, Lusky M, Bartsch DU, Morsman D. Effect of repetitive imaging on topographic measurements of the optic nerve head. Arch Ophthalmol. 1993;111:636–8.

    Article  CAS  PubMed  Google Scholar 

  6. Gloor B, Schmied U, Faessler A. Changes of glaucomatous field defects. Degree of accuracy of measurements with the automatic perimeter Octopus. Int Ophthalmol. 1980;3:5–10.

    Article  CAS  PubMed  Google Scholar 

  7. Grewal DS, Tanna AP. Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography. Curr Opin Ophthalmol. 2013;24:150–61.

    Article  PubMed  Google Scholar 

  8. Na JH, Sung KR, Baek S, Kim YJ, Durbin MK, Lee HJ, et al. Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Investig Ophthalmol Vis Sci. 2012;53:3817–26.

    Article  Google Scholar 

  9. Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna R Jr, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Investig Ophthalmol Vis Sci. 2009;50:5741–8.

    Article  Google Scholar 

  10. Na JH, Sung KR, Baek S, Lee JY, Kim S. Progression of retinal nerve fiber layer thinning in glaucoma assessed by cirrus optical coherence tomography-guided progression analysis. Curr Eye Res. 2013;38:386–95.

    Article  PubMed  Google Scholar 

  11. Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Investig Ophthalmol Vis Sci. 2010;51:1446–52.

    Article  Google Scholar 

  12. Sakamoto A, Hangai M, Nukada M, Nakanishi H, Mori S, Kotera Y, et al. Three-dimensional imaging of the macular retinal nerve fiber layer in glaucoma with spectral-domain optical coherence tomography. Investig Ophthalmol Vis Sci. 2010;51:5062–70.

    Article  Google Scholar 

  13. Lee KS, Lee JR, Na JH, Kook MS. Usefulness of macular thickness derived from spectral-domain optical coherence tomography in the detection of glaucoma progression. Investig Ophthalmol Vis Sci. 2013;54:1941–9.

    Article  Google Scholar 

  14. Roh KH, Jeoung JW, Park KH, Yoo BW, Kim DM. Long-term reproducibility of cirrus HD optical coherence tomography deviation map in clinically stable glaucomatous eyes. Ophthalmology. 2013;120:969–77.

    Article  PubMed  Google Scholar 

  15. Kim KE, Yoo BW, Jeoung JW, Park KH. Long-term reproducibility of macular ganglion cell analysis in clinically stable glaucoma patients. Investig Ophthalmol Vis Sci. 2015;56:5983.

    Article  Google Scholar 

  16. Kim MJ, Park KH, Yoo BW, Jeoung JW, Kim HC, Kim DM. Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect. Acta Ophthalmol. 2015;93:e22–8.

    Article  PubMed  Google Scholar 

  17. Schulzer M. Errors in the diagnosis of visual field progression in normal-tension glaucoma. Ophthalmology. 1994;101:1589–94 (discussion 95).

    Article  CAS  PubMed  Google Scholar 

  18. Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology. 2004;111:2126–32.

    Article  PubMed  Google Scholar 

  19. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276–82.

    Article  Google Scholar 

  20. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Investig Ophthalmol Vis Sci. 2011;52:1138–44.

    Article  Google Scholar 

  21. Suh MH, Yoo BW, Kim JY, Choi YJ, Park KH, Kim HC. Quantitative assessment of retinal nerve fiber layer defect depth using spectral-domain optical coherence tomography. Ophthalmology. 2014;121:1333–40.

    Article  PubMed  Google Scholar 

  22. Strouthidis NG, Scott A, Peter NM, Garway-Heath DF. Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Investig Ophthalmol Vis Sci. 2006;47:2904–10.

    Article  Google Scholar 

  23. Leung CK, Liu S, Weinreb RN, Lai G, Ye C, Cheung CY, et al. Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.

    Article  PubMed  Google Scholar 

  24. Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.

    Article  PubMed  Google Scholar 

  25. Hoyt WF, Frisen L, Newman NM. Fundoscopy of nerve fiber layer defects in glaucoma. Investig Ophthalmol. 1973;12:814–29.

    CAS  Google Scholar 

  26. Savini G, Carbonelli M, Barboni P. Spectral-domain optical coherence tomography for the diagnosis and follow-up of glaucoma. Curr Opin Ophthalmol. 2011;22:115–23.

    Article  PubMed  Google Scholar 

  27. Kotowski J, Folio LS, Wollstein G, Ishikawa H, Ling Y, Bilonick RA, et al. Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans. Br J Ophthalmol. 2012;96:1420–5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119:308–13.

    Article  PubMed  Google Scholar 

  29. Na JH, Sung KR, Baek SH, Kim ST, Shon K, Jung JJ. Rates and patterns of macular and circumpapillary retinal nerve fiber layer thinning in preperimetric and perimetric glaucomatous eyes. J Glaucoma. 2015;24:278–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Ho Park.

Ethics declarations

Conflicts of interest

The authors declare that that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Jeoung, J.W., Yoo, B.W. et al. Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography. Jpn J Ophthalmol 61, 324–333 (2017). https://doi.org/10.1007/s10384-017-0511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-017-0511-3

Keywords

Navigation