Skip to main content
Log in

An evolutionary model with best response and imitative rules

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

We formulate an evolutionary oligopoly model where quantity setting players produce following either the static expectation best response or a performance-proportional imitation rule. The choice on how to behave is driven by an evolutionary selection mechanism according to which the rule that brought the highest performance attracts more followers. The model has a stationary state that represents a heterogeneous population where rational and imitative rules coexist and where players produce at the Cournot–Nash level. We find that the intensity of choice, a parameter representing the evolutionary propensity to switch to the most profitable rule, the cost of the best response implementation as well as the number of players have ambiguous roles in determining the stability property of the Cournot–Nash equilibrium. This marks important differences with most of the results from evolutionary models and oligopoly competitions. Such differences should be referred to the particular imitative behavior we consider in the present modeling setup. Moreover, the global analysis of the model reveals that the above-mentioned parameters introduce further elements of complexity, conditioning the convergence toward an inner attractor. In particular, even when the Cournot–Nash equilibrium loses its stability, outputs of players little differ from the Cournot–Nash level and most of the dynamics is due to wide variations of imitators’ relative fraction. This describes dynamic scenarios where shares of players produce more or less at the same level alternating their decision mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Indeed, there hold

    $$\begin{aligned} \lim _{C\rightarrow C_{\max }}\omega _f&= 1 -\dfrac{2}{N-1},\;\; \lim _{C\rightarrow C_{\max }}\omega ^{*} = \dfrac{1}{1+e^{-\beta \pi ^{*}}},\;\; \lim _{C\rightarrow C_{\max }}\omega _{ns} =1+\dfrac{2}{N-1}. \end{aligned}$$
  2. Indeed, there hold

    $$\begin{aligned} \lim _{N\rightarrow 2^+}\omega _f<0,\;\;\lim _{N\rightarrow 2^+}\omega _{ns}>1. \end{aligned}$$

References

  • Agiza, H.N., Elsadany, A.A.: Nonlinear dynamics in the cournot duopoly game with heterogeneous players. Physica A Stat. Mech. Appl. 320, 512–524 (2003)

    Article  Google Scholar 

  • Agiza, H.N., Elsadany, A.A.: Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 149(3), 843–860 (2004)

    Google Scholar 

  • Agiza, H.N., Hegazi, A.S., Elsadany, A.A.: Complex dynamics and synchronization of a duopoly game with bounded rationality. Math. Comput. Simul. 58(2), 133–146 (2002)

    Article  Google Scholar 

  • Andaluz, J., Jarne, G.: On the dynamics of economic games based on product differentiation. Math. Comput. Simul. 113, 16–27 (2015)

    Article  Google Scholar 

  • Andaluz, J., Elsadany, A.A., Jarne, G.: Nonlinear cournot and bertrand-type dynamic triopoly with differentiated products and heterogeneous expectations. Math. Comput. Simul. 132, 86–99 (2017)

    Article  Google Scholar 

  • Angelini, N., Dieci, R., Nardini, F.: Bifurcation analysis of a dynamic duopoly model with heterogeneous costs and behavioural rules. Math. Comput. Simul. 79(10), 3179–3196 (2009)

    Article  Google Scholar 

  • Apesteguia, J., Huck, S., Oechssler, J.: Imitation—theory and experimental evidence. J. Econ. Theory 136(1), 217–235 (2007)

    Article  Google Scholar 

  • Askar, S.: The rise of complex phenomena in cournot duopoly games due to demand functions without inflection points. Commun. Nonlinear Sci. Numer. Simul. 19(6), 1918–1925 (2014a)

    Article  Google Scholar 

  • Askar, S.S.: Complex dynamic properties of cournot duopoly games with convex and log-concave demand function. Oper. Res. Lett. 42(1), 85–90 (2014b)

    Article  Google Scholar 

  • Bigoni, M., Fort, M.: Information and learning in oligopoly: an experiment. Games Econ. Behav. 81, 192–214 (2013)

    Article  Google Scholar 

  • Bischi, G.I., Naimzada, A.: Global analysis of a dynamic duopoly game with bounded rationality. In: Filar, J.A., Gaitsgory, V., Mizukami, K. (eds.) Advances in Dynamic Games and Applications, pp. 361–385. Birkhäuser, Boston, MA (2000)

    Chapter  Google Scholar 

  • Bischi, G.I., Gallegati, M., Naimzada, A.: Symmetry-breaking bifurcations and representative firm in dynamic duopoly games. Ann. Oper. Res. 89, 252–271 (1999)

    Article  Google Scholar 

  • Bischi, G.I., Kopel, M., Naimzada, A.: On a rent-seeking game described by a non-invertible iterated map with denominator. Nonlinear Anal. Theory Methods Appl. 47(8), 5309–5324 (2001)

    Article  Google Scholar 

  • Bischi, G.I., Naimzada, A.K., Sbragia, L.: Oligopoly games with local monopolistic approximation. J. Econ. Behav. Org. 62(3), 371–388 (2007)

    Article  Google Scholar 

  • Bischi, G.I., Chiarella, C., Kopel, M., Szidarovszky, F.: Nonlinear Oligopolies: Stability and Bifurcations. Springer, Berlin (2009)

    Google Scholar 

  • Bischi, G.I., Lamantia, F., Radi, D.: An evolutionary cournot model with limited market knowledge. J. Econ. Behavior Org. 116, 219–238 (2015)

    Article  Google Scholar 

  • Bischi, G.I., Lamantia, F., Radi, D.: Evolutionary oligopoly games with heterogeneous adaptive players. In: Corchón, L., Marini, M. (eds.) Handbook of Game Theory and Industrial Organization, Volume I. Edward Elgar publishing (2018)

  • Brock, W.A., Hommes, C.H.: A rational route to randomness. Econom. J. Econ. Soc. 65, 1059–1095 (1997)

    Google Scholar 

  • Cavalli, F., Naimzada, A.: A cournot duopoly game with heterogeneous players: nonlinear dynamics of the gradient rule versus local monopolistic approach. Appl. Math. Comput. 249, 382–388 (2014)

    Google Scholar 

  • Cavalli, F., Naimzada, A.: Nonlinear dynamics and convergence speed of heterogeneous cournot duopolies involving best response mechanisms with different degrees of rationality. Nonlinear Dyn. 81(1–2), 967–979 (2015)

    Article  Google Scholar 

  • Cavalli, F., Naimzada, A., Pireddu, M.: Effects of size, composition, and evolutionary pressure in heterogeneous cournot oligopolies with best response decisional mechanisms. Discrete Dyn. Nat. Soc. (2015a). https://doi.org/10.1155/2015/273026

    Article  Google Scholar 

  • Cavalli, F., Naimzada, A., Tramontana, F.: Nonlinear dynamics and global analysis of a heterogeneous cournot duopoly with a local monopolistic approach versus a gradient rule with endogenous reactivity. Commun. Nonlinear Sci. Numer. Simul. 23(1), 245–262 (2015b)

    Article  Google Scholar 

  • Cerboni Baiardi, L., Lamantia, F., Radi, D.: Evolutionary competition between boundedly rational behavioral rules in oligopoly games. Chaos Solitons Fractals 79, 204–225 (2015)

    Article  Google Scholar 

  • Cerboni Baiardi, L., Naimzada, A.K.: Experimental oligopolies modeling: a dynamic approach based on heterogeneous behaviors. Commun. Nonlinear Sci. Numer. Simul. 58, 47–61 (2018)

    Article  Google Scholar 

  • Cournot, A.-A.: Recherches sur les principes mathématiques de la théorie des richesses par Augustin Cournot. chez L. Hachette (1838)

  • Den Haan, W.J.: The importance of the number of different agents in a heterogeneous asset-pricing model. J. Econ. Dyn. Control 25(5), 721–746 (2001)

    Article  Google Scholar 

  • Droste, E., Hommes, C., Tuinstra, J.: Endogenous fluctuations under evolutionary pressure in cournot competition. Games Econ. Behav. 40(2), 232–269 (2002)

    Article  Google Scholar 

  • Fanti, L., Gori, L., Sodini, M.: Nonlinear dynamics in a cournot duopoly with isoelastic demand. Math. Comput. Simul. 108, 129–143 (2015)

    Article  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Evolutionary game dynamics. Bull. Am. Math. Soc. 40(4), 479–519 (2003)

    Article  Google Scholar 

  • Hommes, C.: Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  • Huck, S., Normann, H.-T., Oechssler, J.: Two are few and four are many: number effects in experimental oligopolies. J. Econ. Behav. Org. 53(4), 435–446 (2004)

    Article  Google Scholar 

  • Kopel, M., Lamantia, F., Szidarovszky, F.: Evolutionary competition in a mixed market with socially concerned firms. J. Econ. Dyn. Control 48, 394–409 (2014)

    Article  Google Scholar 

  • Lamantia, F., Radi, D.: Evolutionary technology adoption in an oligopoly market with forward-looking firms. Chaos Interdiscipl. J. Nonlinear Sci. 28(5), 055904 (2018)

    Article  Google Scholar 

  • Leonard, D., Nishimura, K.: Nonlinear dynamics in the Cournot model without full information. Ann. Oper. Res. 89, 165–173 (1999)

    Article  Google Scholar 

  • McFadden, D.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frontiers in Econometrics, pp. 105–142. Academic Press, New York (1973)

  • Naimzada, A., Ricchiuti, G.: Monopoly with local knowledge of demand function. Econ. Model. 28(1), 299–307 (2011)

    Article  Google Scholar 

  • Naimzada, A.K., Sbragia, L.: Oligopoly games with nonlinear demand and cost functions: two boundedly rational adjustment processes. Chaos Solitons Fractals 29(3), 707–722 (2006)

    Article  Google Scholar 

  • Naimzada, A.K., Tramontana, F.: Controlling chaos through local knowledge. Chaos Solitons Fractals 42(4), 2439–2449 (2009)

    Article  Google Scholar 

  • Naimzada, A., Tramontana, F.: Two different routes to complex dynamics in an heterogeneous triopoly game. J. Differ. Equ. Appl. 21(7), 553–563 (2015)

    Article  Google Scholar 

  • Oechssler, J., Roomets, A., Roth, S.: From imitation to collusion: a replication. J. Econ. Sci. Assoc. 2, 1–9 (2016)

    Article  Google Scholar 

  • Offerman, T., Potters, J., Sonnemans, J.: Imitation and belief learning in an oligopoly experiment. Rev. Econ. Stud. 69(4), 973–997 (2002)

    Article  Google Scholar 

  • Pireddu, M.: Chaotic dynamics in three dimensions: a topological proof for a triopoly game model. Nonlinear Anal. Real World Appl. 25, 79–95 (2015)

    Article  Google Scholar 

  • Radi, D.: Walrasian versus cournot behavior in an oligopoly of boundedly rational firms. J. Evolut. Econ. 27, 1–29 (2017)

    Article  Google Scholar 

  • Theocharis, R.D.: On the stability of the cournot solution on the oligopoly problem. Rev. Econ. Stud. 27(2), 133–134 (1960)

    Article  Google Scholar 

  • Tramontana, F.: Heterogeneous duopoly with isoelastic demand function. Econ. Model. 27(1), 350–357 (2010)

    Article  Google Scholar 

  • Tramontana, F., Elsadany, A.A., Xin, B., Agiza, H.N.: Local stability of the cournot solution with increasing heterogeneous competitors. Nonlinear Anal. Real World Appl. 26, 150–160 (2015)

    Article  Google Scholar 

  • Tuinstra, J.: A price adjustment process in a model of monopolistic competition. Int. Game Theory Rev. 6(03), 417–442 (2004)

    Article  Google Scholar 

  • Vega-Redondo, F.: The evolution of walrasian behavior. Econometrica 65(2), 375–384 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been developed in the framework of the research project on “Dynamic Models for behavioural economics” financed by DESP, University of Urbino. The authors thank two anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Cerboni Baiardi.

Appendix

Appendix

1.1 Proof of Proposition 1

Stationary states of map T are the solutions of the following algebraic system of equation:

$$\begin{aligned} \left\{ \begin{array}{l} q_1 = \max \left\{ 0,\dfrac{a-c}{2b} - \dfrac{1}{2}(N-1)\left( (1-\omega )q_1 + \omega q_2\right) \right\} \\ q_2 = \dfrac{(a-c-bN((1-\omega )q_1 + \omega q_2))(q_1^2 + q_2^2) - Cq_1}{ (a-c-bN((1-\omega )q_1 + \omega q_2))(q_1 + q_2) - C}\\ \omega = \dfrac{1}{1+e^{\beta \left\{ (a-c-bN((1-\omega )q_1 + \omega q_2))(q_1 - q_2)-C\right\} }} \end{array}.\right. \end{aligned}$$
(6.1)

We observe that the second equation in (6.1) can be re-expressed as

$$\begin{aligned} q_2 = \dfrac{\pi _1-C}{\pi _1+\pi _2-C}q_1+\dfrac{\pi _2}{\pi _1+\pi _2-C}q_2 \end{aligned}$$

which is equivalent to

$$\begin{aligned} (q_2-q_1)(\pi _1-C)=0. \end{aligned}$$

This equation is satisfied if either \(q_1=q_2\) or \(\pi _1-C=0\). In the former case, the condition \(q_1=q_2\), together with the first equation in (6.1), implies either \(q_1=q_2=q^{*}\) or \(q_1=q_2=0\). Moreover, since the condition \(q_1=q_2\) implies \(\pi _1 = \pi _2\), the stationary share of imitators satisfying the third equation in (6.1) is fixed at the level \(\omega ^{*} = 1/(1 + e^{-\beta C})\). However, only the point \((q^{*},q^{*},\omega ^{*})\) is a feasible stationary state of map T. Indeed, provided that both the representative best responder and imitator set null productions, namely \(q_1=q_2=0\), the imitation rule (2.6) is not defined (see Remark 2).

Let us consider the latter occurrence in which \(\pi _1-C=0\). In this case, the condition \(q_1(t+1)=q_1(t)\) can be rewritten to express the stationary value \(q_2\) in terms of \(q_1\) as

$$\begin{aligned} q_2 = \dfrac{2}{(N-1)\omega }\left( \dfrac{a-c}{2b}-q_1\left( 1+\dfrac{1}{2}(N-1)(1-\omega )\right) \right) . \end{aligned}$$
(6.2)

Hence, the condition \(\pi _1-C=0\) turns to a second-order polynomial in the variable \(q_1\):

$$\begin{aligned} \pi _1-C = \left( 2b\dfrac{N}{N-1}q_1-\dfrac{a-c}{N-1}\right) q_1-C=0 \end{aligned}$$
(6.3)

whose positive root is \(q_1^0\). Then, by substituting the value \(q_1^0\) in Eq. (6.2), the value \(q_2^0\) is obtained. We observe that, provided that condition (2.4) holds, \(q_2^0\) is positive. Indeed,

$$\begin{aligned} q_2^0&=\dfrac{1}{4bN(N-1)\omega }\bigg ((a-c)(3N-1+\omega (N-1))\\&-(N+1-\omega (N-1))\sqrt{(a-c)^2+8bN(N-1)C}\bigg )\\&>\dfrac{1}{4bN(N-1)\omega }\bigg ((a-c)(3N-1+\omega (N-1))\\&\quad -(N+1-\omega (N-1))\sqrt{(a-c)^2+8N(N-1)\left( \dfrac{a-c}{N+1}\right) ^2}\bigg )\\&=\dfrac{a-c}{4bN(N-1)\omega }\bigg (2N+(N+1)\left( 1-\sqrt{1+\dfrac{8N(N-1)}{(N+1)^2}}\right) \\&\quad +\omega (N-1)\left( 1+\sqrt{1+\dfrac{8N(N-1)}{(N+1)^2}}\right) \bigg ) \\&=\dfrac{a-c}{4bN(N-1)\omega }\bigg (2+\omega (N-1)\left( 1+\dfrac{3N-1}{N+1}\right) \bigg )>0. \end{aligned}$$

Finally, the condition \(\omega (t+1) = \omega (t)\) computed at \(q_1 = q_1^0\) and \(q_2 = q_2^0\) leads to the equation \(G(\omega ) = 0\), where

$$\begin{aligned} G(\omega )&=\left( a-c-bN((1-\omega ) q_1^0+\omega q_2^0)\right) (q_1^0-q_2^0)-C- \dfrac{1}{\beta }\ln \left( \dfrac{1}{\omega }-1\right) . \end{aligned}$$

By Eq. (6.3), \(G(\omega )\) can be simplified as follows:

$$\begin{aligned} G(\omega )&= -\dfrac{C}{q_1^0}q_2^0 - \dfrac{1}{\beta }\ln \left( \dfrac{1}{\omega }-1\right) . \end{aligned}$$

Equation \(G(\omega ) = 0\) has a unique root \(\omega ^0\) within the interval [0, 1] such that \(\omega ^0\in (0,1)\) provided that condition 2.4 holds. Indeed, in this case, there holds

$$\begin{aligned} \lim _{\omega \rightarrow 0^+}G(\omega )&= -\infty ,\;\; \lim _{\omega \rightarrow 1^-}G(\omega ) = +\infty \end{aligned}$$

and \(G'(\omega )>0\) for all \(\omega \in (0,1)\).

1.2 Proof of Proposition 2

The Jacobian matrix of map T computed at \(E^{*}\) is given by

$$\begin{aligned} J(E^{*})&=\left( \begin{array}{cccc} -(N-1)(1-\omega ^{*})/2&{} &{}-(N-1)\omega ^{*}/2&{}0\\ \dfrac{\pi ^{*}-C}{2\pi ^{*}-C}&{} &{}\dfrac{\pi ^{*}}{2\pi ^{*}-C}&{}0\\ -\beta N\cdot \dfrac{a-c}{N+1}\cdot \dfrac{e^{-\beta C}}{(1+e^{-\beta C})^2}&{} &{} \beta N\cdot \dfrac{a-c}{N+1}\cdot \dfrac{e^{-\beta C}}{(1+e^{-\beta C})^2}&{}0 \end{array}\right) . \end{aligned}$$

The Jacobian matrix \(J(E^{*})\) has a vanishing column, and its characteristic polynomial can be factorized as \(P(\lambda ) = -\lambda {\hat{P}}(\lambda )\), where

$$\begin{aligned} {\hat{P}}(\lambda )&= \lambda ^2 - \lambda \left( -\dfrac{N-1}{2}(1-\omega ^{*})+ \dfrac{\pi ^{*}}{2\pi ^{*}-C}\right) \\&\quad -\dfrac{N-1}{2}\cdot \dfrac{\pi ^{*}}{2\pi ^{*}-C}(1-\omega ^{*}) + \dfrac{N-1}{2}\cdot \dfrac{\pi ^{*}-C}{2\pi ^{*}-C}\omega ^{*} \end{aligned}$$

is the characteristic polynomial of the \(2\times 2\) matrix \({\hat{J}}\) representing the Jacobian matrix related to the first two recurrences of map T computed at \(q_1 = q_2 = q^{*}\). Hence, the stability conditions for \(E^{*}\) are the Jury’s conditions for the stability of equilibria in two-dimensional discrete-time maps and read as

$$\begin{aligned} {\hat{P}}(1)&>0\;\Longrightarrow \; N+1>0\text { (always satisfied)}\\ {\hat{P}}(-1)&>0\;\Longrightarrow \; \omega ^{*}>\omega _f:=\dfrac{1}{2}\cdot \dfrac{3\pi ^{*}-C}{2\pi ^{*}-C}\cdot \dfrac{N-3}{N-1}\\ \text {det}{\hat{J}}&<1\;\Longrightarrow \;\omega ^{*}<\omega _{ns}:=\dfrac{2}{N-1}+\dfrac{\pi ^{*}}{2\pi ^{*}-C} \end{aligned}$$

and the thesis follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerboni Baiardi, L., Naimzada, A.K. An evolutionary model with best response and imitative rules. Decisions Econ Finan 41, 313–333 (2018). https://doi.org/10.1007/s10203-018-0219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-018-0219-y

Keywords

JEL Classification

Navigation