Skip to main content

Advertisement

Log in

Techno-economic appraisal of waste cellulose processing

  • Brief Communication
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Huge quantities of waste cellulose fibres are being produced in textile, food and particularly paper industries. Their incineration without a costly external increase of the combustion temperature raises environmental concerns because hazardous substances may be formed due to the fact that commercially produced biomass is routinely exposed to excessive amounts of agrochemicals. Fermentation techniques are also unfavourable as the naturally low biodegradability of cellulose requires energy-intensive pretreatment, long hydraulic retention times and heating of huge volumes or costly catalysts. A technical-economic assessment was carried out in a newly developed pyrolysis apparatus that prevents production of tar and flue gases and produces exclusively solid pyrolysis residues. It was confirmed that such a solution could be economically and environmentally beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ahmed I, Gupta AK (2009) Syngas yield during pyrolysis and steam gasification of paper. Appl Energy 86(9):1813–1821

    Article  CAS  Google Scholar 

  • Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87(6):844–856

    Article  CAS  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41(4):1023–1032

    Article  CAS  Google Scholar 

  • Chagger HK, Kendall A, McDonald A, Pourkashanian M, Williams A (1998) Formation of dioxins and other semi–volatile organic compounds in biomass combustion. Appl Energy 60(2):101–114

    Article  CAS  Google Scholar 

  • Dumbrovský M, Sobotková V, Šarapatka B, Pavelková Chmelová R, Váchalová R (2015) Long-Term progress in Water Quality after Land Consolidation in a Drinking Water Reservoir Watershed. Soil and Water Research 10(1):49–55. doi:10.17221/108/2013-SWR ISSN 1801-5395 (Print), ISSN 1805-9384 (On-line)

    Article  Google Scholar 

  • Fullerton DG, Semple S, Kalambo F, Suseno A, Malamba R, Henderson G, Gordon SB (2009) Biomass fuel use and indoor air pollution in homes in Malawi. Occup Environ Med 66(11):777–783

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  Google Scholar 

  • Jin W, Xu X, Gao Y, Yang F, Wang G (2014) Anaerobic fermentation of biogas liquid pretreated maize straw by rumen microorganisms in vitro. Bioresour Technol 153:8–14

    Article  CAS  Google Scholar 

  • Mandels M, Hontz L, Nystrom J (1974) Enzymatic hydrolysis of waste cellulose. Biotechnol Bioeng 16(11):1471–1493

    Article  CAS  Google Scholar 

  • Mardoyan A, Braun P (2015) Analysis of Czech Subsidies for Solid Biofuels. Int J Green Energy 12:405–408

    Article  CAS  Google Scholar 

  • Maroušek J (2012) Finding the optimal parameters for the steam explosion process of hay. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 35(2): 1–9

  • Maroušek J (2013) Removal of hardly fermentable ballast from the maize silage to accelerate biogas production. Ind Crops Prod 44:253–257

    Article  Google Scholar 

  • Maroušek J (2014) Significant breakthrough in biochar cost reduction. Clean Techn Environ 16:1821–1825

    Article  Google Scholar 

  • Maroušek J, Kawamitsu Y, Ueno M, Kondo Y, Kolar L (2012) Methods for improving methane yield from rye straw. Appl Eng Agric 28(5):747–755

    Article  Google Scholar 

  • Maroušek J, Itoh S, Higa O, Kondo Y, Ueno M, Suwa R, Kawamitsu Y (2013) Enzymatic hydrolysis enhanced by pressure shockwaves opening new possibilities in Jatropha Curcas L. processing. J Chem Technol Biotechnol 88(9):1650–1653

    Article  Google Scholar 

  • Mussoline W, Esposito G, Giordano A, Lens P (2013) The anaerobic digestion of rice straw: a review. Critical Rev Environ Sci Technol 43(9):895–915

    Article  CAS  Google Scholar 

  • Nikolov T, Bakalova N, Petrova S, Benadova R, Spasov S, Kolev D (2000) An effective method for bioconversion of delignified waste–cellulose fibers from the paper industry with a cellulase complex. Bioresour Technol 71(1):1–4

    Article  CAS  Google Scholar 

  • Picchi G, Silvestri S, Cristoforetti A (2013) Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): comparison to wood chips and means of polluting emissions control. Fuel 113:43–49

    Article  CAS  Google Scholar 

  • Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Beltrán J, Cavinato C, Clinckspoor M, Demirer G, Diamadopoulos E, Frigon JC, Koubova J, Launay M, Méndez R, Menin G, Noguerol J, Uellehdahl H, West S (2010). Quality improvement in determination of chemical oxygen demand in samples considered difficult to analyze, through participation in proficiency-testing schemes. Trends Anal Chem 29(9):1082–1091

    Article  CAS  Google Scholar 

  • Sahu SG, Chakraborty N, Sarkar P (2014) Coal–biomass co–combustion: an overview. Renew Sustain Energy Rev 39:575–586

    Article  CAS  Google Scholar 

  • Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis: a review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev 50:1081–1096

    Article  CAS  Google Scholar 

  • Shen Y, Yoshikawa K (2013) Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis: a review. Renew Sustain Energy Rev 21:371–392

    Article  CAS  Google Scholar 

  • Shirato Y, Yokozawa M (2006) Acid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biol Biochem 38:812–816

    Article  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Thomas Klasson K, Chang S, Wartelle LH, Rodgers JE (2010) Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter–derived biochars in water and soil. J Agric Food Chem 58(9):5538–5544

    Article  CAS  Google Scholar 

  • Váchalová R, Marešová I, Kolář L, Váchal J, Tříska J (2014) Lignocellulosic biorefinery for waste-free manufacturing of lignans sugars for production of ethanol and growing medium. Wood Res 59(4):593–604 ISSN 1336-4561

    Google Scholar 

  • Vochozka M, Maroušková A, Váchal J, Straková J (2015) Reengineering the paper mill waste management. Clean Technol Environ Policy, 1-7. doi:10.1007/s10098-015-1012-z

  • White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91(1):1–33

    Article  CAS  Google Scholar 

  • Xie T, Reddy KR, Wang C, Yargicoglu E, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Technol 45(9):939–969

    Article  CAS  Google Scholar 

  • Zhang X, Wang H, He L, Lu K, Sarmah A, Li J, Huang H (2013) Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ Sci Pollut Res 20(12):8472–8483

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the criticism raised by anonymous reviewers that increased the overall quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Vochozka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vochozka, M., Maroušková, A., Straková, J. et al. Techno-economic appraisal of waste cellulose processing. Clean Techn Environ Policy 18, 1233–1237 (2016). https://doi.org/10.1007/s10098-015-1089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1089-4

Keywords

Navigation