Skip to main content
Log in

Magnetic Resonance Study of Fe-Implanted TiO2 Rutile

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Single-crystal (100) and (001) TiO2 rutile substrates have been implanted with 40 keV Fe+ at room temperature with high doses in the range of (0.5–1.5) × 1017 ions/cm2. A ferromagnetic resonance (FMR) signal has been observed for all samples with the intensity and the out-of-plane anisotropy increasing with the implantation dose. The FMR signal has been related to the formation of a percolated metal layer consisting of close-packed iron nanoparticles in the implanted region of TiO2 substrate. Electron spin resonance (ESR) signal of paramagnetic Fe3+ ions substituting Ti4+ positions in the TiO2 rutile structure has been also observed. The dependences of FMR resonance fields on the DC magnetic field orientation reveal a strong in-plane anisotropy for both (100) and (001) substrate planes. An origin of the in-plane anisotropy of FMR signal is attributed to the textured growth of the iron nanoparticles. As result of the nanoparticle growth aligned with respect to the structure of the rutile host, the in-plane magnetic anisotropy of the samples reflects the symmetry of the crystal structure of the TiO2 substrates. Crystallographic directions of the preferential growth of iron nanoparticles have been determined by computer modeling of anisotropic ESR signal of substitutional Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Dietl, J. Phys. Condens. Matter 19, 165204 (2007)

    Article  ADS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  3. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 29, 854 (2001)

    Article  ADS  Google Scholar 

  4. S.A. Chambers, Surf. Sci. Rep. 61, 345 (2006)

    Article  ADS  Google Scholar 

  5. K. Potzger, Nucl. Instrum. Methods Phys. Res. B 272, 78 (2012)

    Article  ADS  Google Scholar 

  6. G.D. Nipan, A.I. Stognij, V.A. Ketsko, Russ. Chem. Rev. 81, 458 (2012)

    Article  ADS  Google Scholar 

  7. R.I. Khaibullin, L.R. Tagirov, B.Z. Rameev, Sh.Z. Ibragimov, F. Yıldız, B. Aktaş, J. Phys. Condens. Matter 16, L443 (2004)

    Article  ADS  Google Scholar 

  8. B. Aktaş, F. Yildiz, B. Rameev, R. Khaibullin, L. Tagirov, M. Özdemir, Phys. Status Solidi C 1, 3319 (2004)

    Article  ADS  Google Scholar 

  9. N. Akdogan, B.Z. Rameev, L. Dorosinsky, H. Sozeri, R.I. Khaibullin, B. Aktas, L.R. Tagirov, A. Westphalen, H. Zabel, J. Phys. Condens. Matter 17, L359 (2005)

    Article  ADS  Google Scholar 

  10. A. Nefedov, N. Akdogan, H. Zabel, R.I. Khaibullin, L.R. Tagirov, B. Aktas, Appl. Phys. Lett. 89, 182509 (2006)

    Article  ADS  Google Scholar 

  11. M.M. Cruz, R.C. da Silva, J.V. Pinto, R.P. Borges, N. Franco, A. Casaca, E. Alves, M.J. Godinho, J. Magn. Magn. Mater. 340, 102 (2013)

    Article  ADS  Google Scholar 

  12. R.I. Khaibullin, Sh.Z. Ibragimov, L.R. Tagirov, V.N. Popok, I.B. Khaibullin, Nucl. Instrum. Methods Phys. Res. B 257, 369 (2007)

    Article  ADS  Google Scholar 

  13. C. Okay, B.Z. Rameev, S. Güler, R.I. Khaibullin, R.R. Khakimova, Y.N. Osin, N. Akdoğan, A.I. Gumarov, A. Nefedov, H. Zabel, B. Aktaş, Appl. Phys. A 104, 667 (2011)

    Article  ADS  Google Scholar 

  14. S. Zhou, G. Talut, K. Potzger, A. Shalimov, J. Grenzer, W. Skorupa, M. Helm, J. Fassbender, E. Cizmar, S. Zvyagin, J. Wosnitza, J. Appl. Phys. 103, 083907 (2008)

    Article  ADS  Google Scholar 

  15. S. Zhou, K. Potzger, G. Talut, J. von Borany, W. Skorupa, M. Helm, J. Fassbender, J. Appl. Phys. 103, 07D530 (2008)

    Article  Google Scholar 

  16. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985). SRIM-2008 software at http://www.srim.org/

  17. A.A. Achkeev, R.I. Khaibullin, L.R. Tagirov, A. Mackova, V. Hnatowicz, N. Cherkashin, Phys. Solid State 53, 543 (2011)

    Article  ADS  Google Scholar 

  18. S. Güler, B. Rameev, R.I. Khaibullin, H. Bayrakdar, B. Aktaş, Phys. Status Solidi A 203, 1533 (2006)

    Article  ADS  Google Scholar 

  19. J. Dubowik, Phys. Rev. B 54, 1088 (1996)

    Article  ADS  Google Scholar 

  20. G.N. Kakazei, A.F. Kravets, N.A. Lesnik, M.M. Pereira de Azevedo, Yu.G. Pogorelov, J.B. Sousa, J. Appl. Phys. 85, 5654 (1999)

    Article  ADS  Google Scholar 

  21. Yu.G. Pogorelov, G.N. Kakazei, M.M.P. de Azevedo, J.B. Sousa, J. Magn. Magn. Mater. 112, 196 (1999)

    Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996), p. 505

    Google Scholar 

  23. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

    Google Scholar 

  24. S. Güler, B. Rameev, R.I. Khaibullin, O.N. Lopatin, B. Aktaş, J. Magn. Magn. Mater. 322, L13 (2010)

    Article  Google Scholar 

  25. S.V. Vonsovskii, Ferromagnetic Resonance (Pergamon Press, Oxford, 1966)

    Google Scholar 

  26. B. Aktaş, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yildiz, K. Özdoğan, M. Özdemir, O. Yalçin, B.Z. Rameev, J. Appl. Phys. 102, 013912 (2007)

    Article  ADS  Google Scholar 

  27. B. Aktaş, B. Heinrich, G. Woltersdorf, R. Urban, L.R. Tagirov, F. Yıldız, K. Özdoğan, M. Özdemir, O. Yalçin, B.Z. Rameev, in Magnetic Nanostructures, Springer Series in Materials Science, vol. 94, ed. by B. Aktas, L.R. Tagirov, F. Mikailov (Springer, Berlin, 2007), pp. 167–184

    Google Scholar 

  28. E.C. Corredor, J.I. Arnaudas, M. Ciria, F. Lofink, S. Rößler, R. Frömter, H.P. Oepen, Phys. Rev. B 90, 184410 (2014)

    Article  ADS  Google Scholar 

  29. A.I. Rykov, K. Nomura, J. Sakuma, C. Barrero, Y. Yoda, T. Mitsui, Phys. Rev. B 77, 014302 (2008)

    Article  ADS  Google Scholar 

  30. E.N. Dulov, N.G. Ivoilov, D.M. Khripunov, L.R. Tagirov, R.I. Khaibullin, V.F. Valev, V.I. Nuzhdin, Tech. Phys. Lett. 35, 483 (2009)

    Article  ADS  Google Scholar 

  31. I.R. Vakhitov, N.M. Lyadov, V.F. Valeev, V.I. Nuzhdin, L.R. Tagirov, R.I. Khaibullin, J. Phys: Conf. Ser. 572, 012048 (2014)

    Google Scholar 

  32. N. Akdoğan, B. Rameev, S. Güler, O. Oztürk, B. Aktaş, H. Zabel, R. Khaibullin, L. Tagirov, Appl. Phys. Lett. 95, 102502 (2009)

    Article  ADS  Google Scholar 

  33. S. Zhou, K. Potzger, G. Talut, H. Reuther, J. von Borany, R. Grötzschel, W. Skorupa, M. Helm, J. Fassbender, N. Volbers, M. Lorenz, T. Herrmannsdörfer, J. Appl. Phys. 103, 023902 (2008)

    Article  ADS  Google Scholar 

  34. T. Fukumura, H. Toyosaki, Y. Yamada, Sci. Technol. 20, S103–S111 (2005)

    ADS  Google Scholar 

  35. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  36. C.H. Bates, W.B. White, R. Roy, J. Inorg. Nucl. Chem. 28, 397 (1966)

    Article  Google Scholar 

  37. R. Janisch, P. Gopal, N.A. Spaldin, J. Phys. Condens. Matter 17, R657–R689 (2005)

    Article  ADS  Google Scholar 

  38. B. Brežný and A. Muan, J. Inorg. Nucl. Chem. 31, 649 (1969)

    Article  Google Scholar 

  39. T. Fukumura, M. Kawasaki, in Functional Metal Oxides, ed. by S.B. Ogale, T.V. Venkatesan, M.G. Blamire (Wiley, London, 2013), pp. 89–131. doi:10.1002/9783527654864.ch3

    Chapter  Google Scholar 

  40. K. Yates, Diluted magnetic oxides: current status and prospects, in Nanomagnetism and Spintronics. Fabrication Materials, Characterization and Applications, ed. by F. Nasirpouri, A. Nogaret (Word Scientific, Singapore, 2011)

    Google Scholar 

  41. M. Fleischhammer, M. Panthöfer, W. Tremel, J. Solid State Chem. 182, 942–947 (2009)

    Article  ADS  Google Scholar 

  42. N. Akdogan, A. Nefedov, K. Westerholt, H. Zabel, H.-W. Becker, C. Somsen, R. Khaibullin, L. Tagirov, J. Phys. D Appl. Phys. 41, 165001 (2008)

    Article  ADS  Google Scholar 

  43. O. Yıldırım, S. Cornelius, M. Butterling, W. Anwand, A. Wagner, A. Smekhova, J. Fiedler, R. Böttger, C. Bähtz, K. Potzger, Appl. Phys. Lett. 107, 242405 (2015)

    Article  ADS  Google Scholar 

  44. S. Kuroda, N. Nichizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, T. Dietl, Nat. Mater. 6, 440 (2007)

    Article  ADS  Google Scholar 

  45. M. Opel, J. Phys. D Appl. Phys. 45, 33001 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the TÜBİTAK/RFBR Joint Project Programme, no. 213M524/14-02-91374_CT-a and TÜBİTAK, project no. 115F472. I. R. Vakhitov acknowledges the Russian Government Program of Competitive Growth of Kazan Federal University (KFU) and PCR Federal Center of Shared Facilities of KFU. Authors from the Kazan E.K. Zavoisky Physical-Technical Institute acknowledge partial support by  Programme no. 26 of the Russian Academy of Sciences “Electron spin resonance, spin-dependent electronic phenomena and spin technologies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Okay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okay, C., Vakhitov, I.R., Valeev, V.F. et al. Magnetic Resonance Study of Fe-Implanted TiO2 Rutile. Appl Magn Reson 48, 347–360 (2017). https://doi.org/10.1007/s00723-017-0868-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0868-y

Keywords

Navigation