Skip to main content
Log in

Role of cloud feedback in regulating the “pool of inhibited cloudiness” over the Bay of Bengal

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Cloud-circulation feedback by latent heating (LH) is a major contributor for driving atmospheric circulation. This study examines the potential role of spatial variations of LH in driving a mini-circulation for generating the “pool of inhibited cloudiness”, where cloud formation in the lower and middle troposphere is significantly inhibited over the southwest Bay of Bengal (BoB) during the Indian summer monsoon. Spaceborne observations show that LH rates in the deep convective regions of the head BoB are as high as 0.2 K/h, while that over the “pool” are about 5 times smaller. This differential heating results in modulating the mean circulation. 20 years of reanalysis data show good correlation between (a) upper troposphere (300 hPa) convergence and lower tropospheric (1000 hPa) divergence at the “pool” and (b) lower tropospheric divergence at the “pool” and lower tropospheric convergence at the head BoB as well as at the west coast of India. Besides the orographic influence, a portion of the air mass descending at the “pool” arises from deep convective regions in the north BoB and equatorial trough. This subsidence is responsible for the persistent inhibition to cloud formation at the “pool”. This case forms a classic example of the cloud-circulation feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes HC, Zuluaga MD, Houze RA (2015) Latent heating characteristics of the MJO computed from TRMM observations. J Geophys Res 120(4):1322–1334. doi:10.1002/2014JD022530

    Google Scholar 

  • Bhat GS, Kumar S (2015) Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J Geophys Res 120(5):1710–1722. doi:10.1002/2014JD022552

    Google Scholar 

  • Bourassa MA, Legler DM, O’brien JJ, Smith SR (2003) Seawinds validation with research vessels. Journal of Geophysical Research: Oceans 108(C2):

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dey S, Nishant N, Sengupta K, Ghosh S (2015) Cloud climatology over the oceanic regions adjacent to the Indian Subcontinent: inter-comparison between passive and active sensors. Int J Rem Sens 36(3):899–916. doi:10.1080/01431161.2014.1001082

    Article  Google Scholar 

  • Grossman RL, Garcia O (1990) The distribution of deep convection over ocean and land during the Asian Summer Monsoon. J Clim 3(9):1032–1044. doi:10.1175/1520-0442(1990)003<1032:TDODCO>2.0.CO;2

    Article  Google Scholar 

  • Guo H, Golaz JC, Donner LJ, Wyman B, Zhao M, Ginoux P (2015) Clubb as a unified cloud parameterization: opportunities and challenges. Geophys Res Lett 42(11):4540–4547. doi:10.1002/2015GL063672

    Article  Google Scholar 

  • Haynes JM, Stephens GL (2007) Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat. Geophys Res Lett 34: doi:10.1029/2007GL029335

  • Huffman GJ, Adler RF, Arkin P, Chang A, Ferraro R, Gruber A, Janowiak J, McNab A, Rudolf B, Schneider U (1997) The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull Amer Met Soc 78(1):5–20. doi:10.1175/1520-0477(1997)078

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: Gpcp version 2.1. Geophysical Research Letters DOI: 10.1029/2009GL040000, URL: doi: 10.1029/2009GL040000, l17808.

  • Kodama YM, Katsumata M, Mori S, Satoh S, Hirose Y, Ueda H (2009) Climatology of Warm Rain and Associated Latent Heating Derived from TRMM PR Observations. J Clim 22(18):4908–4929. doi:10.1175/2009JCLI2575.1, URL: http://journals.ametsoc.org/doi/abs/10.1175/2009JCLI2575.1

  • Lappen CL, Schumacher C (2014) The role of tilted heating in the evolution of the MJO. J Geophys Res 119(6):2966–2989. doi:10.1002/2013JD020638

    Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Amer Meterol Soc 77:1275–1277

    Google Scholar 

  • Liu WT (2002) Progress in scatterometer application. J Oceanogr 58:121–136

    Article  Google Scholar 

  • Meenu S, Rajeev K, Parameswaran K, Nair AKM (2010) Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. J Geophys Res 115(D5):D05,205. doi:10.1029/2009JD01180

    Article  Google Scholar 

  • Nair AKM, Rajeev K, Sijikumar S, Meenu S (2011) Characteristics of a persistent “pool of inhibited cloudiness” and its genesis over the Bay of Bengal associated with the Asian summer monsoon. Ann Geophys 29(7):1247–1252. doi:10.5194/angeo-29-1247-2011

    Article  Google Scholar 

  • Newell RE, Gould-Stewart S (1981) A Stratospheric Fountain? J Atmos Sci 38(12):2789–2796. doi:10.1175/1520-0469(1981)038

    Article  Google Scholar 

  • Park MS, Elsberry RL (2013) Latent Heating and Cooling Rates in Developing and Nondeveloping Tropical Disturbances during TCS-08: TRMM PR versus ELDORA Retrievals*. Journal of the Atmospheric Sciences 70(1):15–35, doi:10.1175/JAS-D-12-083.1, URL: http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-12-083.1

  • Rajeevan M, Srinivasan J (2000) Net cloud radiative forcing at the top of the atmosphere in the Asian Monsoon Region. J Clim 13(3):650–657. doi:10.1175/1520-0442(2000)013

    Article  Google Scholar 

  • Rao TN, Saikranthi K, Radhakrishna B, Bhaskara Rao SV (2016) Differences in the climatological characteristics of precipitation between active and break spells of the Indian Summer Monsoon. J Climate 29(21):7797–7814. doi:10.1175/JCLI-D-16-0028.1

    Article  Google Scholar 

  • Roca R, Louvet S, Picon L, Desbois M (2005) A study of convective systems, water vapor and top of the atmosphere cloud radiative forcing over the Indian Ocean using INSAT-1B and ERBE data. Meteorol Atmos Phys 90(1–2):49–65. doi:10.1007/s00703-004-0098-3

    Article  Google Scholar 

  • Saikranthi K, Narayana Rao T, Radhakrishna B, Rao SVB (2014) Morphology of the vertical structure of precipitation over India and adjoining oceans based on long-term measurements of TRMM PR. J Geophys Res 119(13):8433–8449. doi:10.1002/2014JD021774

    Google Scholar 

  • Sathiyamoorthy V, Pal PK, Joshi PC (2004) Influence of the upper-tropospheric wind shear upon cloud radiative forcing in the Asian monsoon region. J Clim 17(1997):2725–2735. doi:10.1175/1520-0442(2004)017

    Article  Google Scholar 

  • Sijikumar S, John L, Manjusha K (2013) Sensitivity study on the role of Western Ghats in simulating the Asian summer monsoon characteristics. Meteorol Atmos Phys 120(1–2):53–60. doi:10.1007/s00703-013-0238-8

    Article  Google Scholar 

  • Smith RB (1985) Comment on interaction of low-level flow with the Western Ghat Mountains and offshore convection in the Summer Monsoon. Mon Weather Rev 113(12):2176–2177. doi:10.1175/1520-0493(1985)113

    Article  Google Scholar 

  • Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18(2):237–273. doi:10.1175/JCLI-3243.1

    Article  Google Scholar 

  • Tao WK, Lang S, Olson WS, Meneghini R, Yang S, Simpson J, Kummerow C, Smith E, Halverson J (2001) Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998. J Appl Meterol 40(6):957–982. doi:10.1175/1520-0450(2001)040

    Article  Google Scholar 

  • Tao WK, Smith EA, Adler RF, Hou AY, Meneghini R, Simpson J, Haddad ZS, Iguchi T, Satoh S, Kakar R, Krishnamurti TN, Kummerow CD, Lang S, Nakamura K, Nakazawa T, Okamoto K, Shige S, Olson WS, Takayabu Y, Tripoli GJ, Yang S (2006) Retrieval of latent heating from TRMM measurements. Bull Amer Met Soc 87(11):1555–1572. doi:10.1175/BAMS-87-11-1555

    Article  Google Scholar 

  • Tao WK, Takayabu YN, Lang S, Shige S, Olson W, Hou A, Skofronick-Jackson G, Jiang X, Zhang C, Lau W, Krishnamurti T, Waliser D, Grecu M, Ciesielski PE, Johnson RH, Houze R, Kakar R, Nakamura K, Braun S, Hagos S, Oki R, Bhardwaj A (2016) Trmm latent heating retrieval: Applications and comparisons with field campaigns and large-scale analyses. Meteorol Monogr 56:2.1–2.34, Doi: 10.1175/AMSMONOGRAPHS-D-15-0013.1

  • Tawde SA, Singh C (2015) Investigation of orographic features influencing spatial distribution of rainfall over the Western Ghats of India using satellite data. Intl J Climatol 35(9):2280–2293. doi:10.1002/joc.4146

    Article  Google Scholar 

  • Xie SP, Xu H, Saji NH, Wang Y, Liu WT (2006) Role of Narrow Mountains in large-scale organization of Asian Monsoon convection. J Climate 19(14):3420–3429. doi:10.1175/JCLI3777.1

    Article  Google Scholar 

  • Zuluaga MD, Hoyos CD, Webster PJ (2010) Spatial and temporal distribution of latent heating in the South Asian monsoon region. J Clim 23(8):2010–2029. doi:10.1175/2009JCLI3026.1

    Article  Google Scholar 

Download references

Acknowledgements

2B-GEOPROF data were obtained from the CloudSat Data Processing Center through its website (http://www.cloudsat.cira.colostate.edu). TRMM-rain rate, convective, and stratiform heating data were obtained from NASA-GES DISC through www.disc.sci.gsfc.nasa.gov/precipitation. QuikSCAT scatterometer data were obtained from CERSAT through ftp://ftp.ifremer.fr/ifremer/cersat/products. ECMWF interim reanalysis data were obtained from http://www.ecmwf.int website. GPCP precipitation data were obtained from the Physical Sciences Division, ESRL (NOAA), The authors acknowledge Prof. A. Jayaraman, Director, NARL and Dr. Radhika Ramachandran, Director, SPL for their suggestions. The authors also thank the valuable suggestions and comments by the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anish Kumar M. Nair.

Additional information

Responsible Editor: C. Simmer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (JPEG 455 kb)

ESM1 (JPEG 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, A.K.M., Rao, T.N. & Rajeev, K. Role of cloud feedback in regulating the “pool of inhibited cloudiness” over the Bay of Bengal. Meteorol Atmos Phys 131, 183–194 (2019). https://doi.org/10.1007/s00703-017-0560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-017-0560-7

Navigation