Skip to main content
Log in

Effects of fatigue and damage on the hysteresis loops of ferroelectric ceramics

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Electric fatigue and radiation damage may induce pinched polarization hysteresis loops and asymmetric strain hysteresis loops of ferroelectric ceramics, respectively. Based on a gradual domain switching model, this paper formulates a novel constitutive model to investigate the hysteresis deformation behavior of ferroelectric ceramics by radiation damage and electric fatigue. First, two important physical mechanisms, namely, alignment of the defect dipoles and domain-wall pinning due to diffusion of charged defects, are considered in irradiated ferroelectric ceramics. It is found that the alignment of the defect dipoles acts as an internal field and increases the coercive field, while the domain-wall pinning clamps the domain and causes the vanishment of remanent polarization. Second, the effects of point defects and domain pinning by space charges are taken into account in ferroelectric fatigue model. The results of simulations reveal that the spatial distribution and electric property of space charges play a dominant role in the asymmetry of strain hysteresis loops. The proposed model can elucidate experimental phenomena reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chynoweth AG (1959) Radiation damage effects in ferroelectric triglycine sulfate. Phys Rev 113(1):159–166. doi:10.1103/PhysRev.113.159

    Article  Google Scholar 

  • Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267–1324. doi:10.1088/0034-4885/61/9/002

    Article  Google Scholar 

  • Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford

    Google Scholar 

  • Lupascu DC (2004) Fatigue in ferroelectric ceramics and related issues. Springer, Heidelberg

    Google Scholar 

  • Morozovska AN, Eliseev EA (2005) Phenomenological description of polarization switching in ferroelectric semiconductors with charged defects. Phys Status Solidi 242(4):947–961. doi:10.1002/pssb.200402107

    Article  Google Scholar 

  • Ozgul M et al (2004) Influence of electrical cycling on polarization reversal processes in Pb(Zr1/3Nb2/3)O3–PbTiO3 ferroelectric single crystals as a function of orientation. J Appl Phys 85:4296–4302. doi:10.1063/1.1687046

    Article  Google Scholar 

  • Ren XB (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3:91–94. doi:10.1038/nmat1051

    Article  Google Scholar 

  • Robert G et al (2000) Preisach modeling of ferroelectric pinched loops. Appl Phys Lett 77(26):4413–4415. doi:10.1063/1.1332824

    Article  Google Scholar 

  • Singh RN (2003) Large strain ceramics based on electric field-induced antiferroelectric–ferroelectric phase transformation in Sr-modified PZT. Ferroelectrics 293:219–229. doi:10.1080/00150190390238432

    Article  Google Scholar 

  • Tamura T et al (1999) Hysteresis variations of (Pb, La) (Zr, Ti)O3 capacitors baked in a hydrogen atmosphere. Appl Phys Lett 74(22):3395–3397. doi:10.1063/1.123356

    Article  Google Scholar 

  • Uchino K (2000) Ferroelectric devices. Marcel-Dekker, New York

    Google Scholar 

  • Warren WL et al (1996) Defect-dipole alignment and tetragonal strain in ferroelectrics. J Appl Phys 79:9250–9257. doi:10.1063/1.362600

    Article  Google Scholar 

  • Yu L et al (2007a) Effects of electric fatigue on the butterfly curves of ferroelectric ceramics. Mater Sci Eng A 459:273–277. doi:10.1016/j.msea.2007.01.063

    Article  Google Scholar 

  • Yu L et al (2007b) A simple constitutive model for ferroelectric ceramics under electrical/mechanical loading. Acta Mech Solida Sin 20(1):1–12

    Google Scholar 

  • Yu Y, Singh RN (2001) Phase stability and ferroelectric properties of lead strontium zirconate titanate ceramics. J Am Ceram Soc 84(2):333–340

    Article  Google Scholar 

  • Yu Y, Singh RN (2003) Electrical properties and electric field-induced antiferroelectric–ferroelectric phase transition in Nd3+-doped lead strontium zirconate titanate ceramics. J Appl Phys 94(11):7250–7255. doi:10.1063/1.1620678

    Article  Google Scholar 

  • Zhang Y et al (2005) Heterogeneity of fatigue in bulk lead zirconate titanate. Acta Mater 53:2203–2213. doi:10.1016/j.actamat.2005.01.048

    Article  Google Scholar 

Download references

Acknowledgment

This project supported by NSFC (Nr.10572067,10772093) and NBRPC-973 program 2007CB936803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Yu, L. Effects of fatigue and damage on the hysteresis loops of ferroelectric ceramics. Microsyst Technol 15, 33–38 (2009). https://doi.org/10.1007/s00542-008-0691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0691-3

Keywords

Navigation