Skip to main content
Log in

Topological singular set of vector-valued maps, I: applications to manifold-constrained Sobolev and BV spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We introduce an operator \(\mathbf {S}\) on vector-valued maps u which has the ability to capture the relevant topological information carried by u. In particular, this operator is defined on maps that take values in a closed submanifold \(\mathscr {N}\) of the Euclidean space \(\mathbb {R}^m\), and coincides with the distributional Jacobian in case \(\mathscr {N}\) is a sphere. More precisely, the range of \(\mathbf {S}\) is a set of maps whose values are flat chains with coefficients in a suitable normed abelian group. In this paper, we use \(\mathbf {S}\) to characterise strong limits of smooth, \(\mathscr {N}\)-valued maps with respect to Sobolev norms, extending a result by Pakzad and Rivière. We also discuss applications to the study of manifold-valued maps of bounded variation. In a companion paper, we will consider applications to the asymptotic behaviour of minimisers of Ginzburg–Landau type functionals, with \(\mathscr {N}\)-well potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, T.: Flat chains in Banach spaces. J. Geom. Anal. 18(1), 1–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alberti, G., Baldo, S., Orlandi, G.: Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5(3), 275–311 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alberti, G., Baldo, S., Orlandi, G.: Variational convergence for functionals of Ginzburg–Landau type. Indiana Univ. Math. J. 54(5), 1411–1472 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alicandro, R., Ponsiglione, M.: Ginzburg–Landau functionals and renormalized energy: a revised \(\Gamma \)-convergence approach. J. Funct. Anal. 266(8), 4890–4907 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  6. Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bethuel, F.: A characterization of maps in \({H}^1({B}^3, {S}^2)\) which can be approximated by smooth maps. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 7(4), 269–286 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167(3–4), 153–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bethuel, F.: A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces. Preprint arXiv:1401.1649 (2014)

  10. Bethuel, F.: A new obstruction to the extension problem for Sobolev maps between manifolds. J. Fix. Point. Theory A. 15(1), 155–183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bethuel, F., Brezis, H., Coron, J.-M.: Relaxed Energies for Harmonic Maps, pp. 37–52. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  12. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  13. Bethuel, F., Brezis, H., Orlandi, G.: Asymptotics for the Ginzburg–Landau equation in arbitrary dimensions. J. Funct. Anal. 186(2), 432–520 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bethuel, F., Chiron, D.: Some questions related to the lifting problem in Sobolev spaces. Contemp. Math. 446, 125–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bethuel, F., Coron, J.-M., Demengel, F., Hélein, F.: A Cohomological Criterion for Density of Smooth Maps in Sobolev Spaces Between Two Manifolds, pp. 15–23. Springer, Dordrecht (1991)

    MATH  Google Scholar 

  16. Bethuel, F., Orlandi, G., Smets, D.: Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature. Ann. Math. 163(1), 37–163 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourgain, J., Brezis, H., Mironescu, P.: Lifting in Sobolev spaces. Journal d’Analyse Mathématique 80(1), 37–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourgain, J., Brezis, H., Mironescu, P.: Lifting, degree, and distributional Jacobian revisited. Commun. Pure Appl. Math. 58(4), 529–551 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bousquet, P., Ponce, A.C., Van Schaftingen, J.: Density of smooth maps for fractional Sobolev spaces \({W}^{s, p}\) into \(\ell \)-simply connected manifolds when \(s\ge 1\). Confluentes Mathematici 5(2), 3–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brezis, H., Nguyen, H.-M.: The Jacobian determinant revisited. Invent. Math. 185(1), 17–54 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brezis, H., Nirenberg, L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1(2), 197–263 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau–de Gennes model for liquid crystals. ESAIM: Control Optim. Calc. Var. 21(1), 101–137 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Canevari, G.: Line defects in the small elastic constant limit of a three-dimensional Landau–de Gennes model. Arch. Ration. Mech. Anal. 223(2), 591–676 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Canevari, G., Segatti, A., Veneroni, M.: Morse’s index formula in VMO on compact manifold with boundary. J. Funct. Anal. 269(10), 3043–3082 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Canevari, G., Orlandi, G.: Topological singular set of vector-valued maps, II: \(\Gamma \)-convergence for Ginzburg–Landau type functionals (in preparation)

  26. Chiron, D.: On the definitions of Sobolev and BV spaces into singular spaces and the trace problem. Commun. Contemp. Math. 9(4), 473–513 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dávila, J., Ignat, R.: Lifting of BV functions with values in \({S}^1\). C. R. Math. 337(3), 159–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics. Clarendon Press, Oxford (1993)

    Google Scholar 

  29. De Pauw, T., Hardt, R.: Rectifiable and flat \(G\) chains in a metric space. Am. J. Math. 134(1), 1–69 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. De Pauw, T., Hardt, R.: Some basic theorems on flat \(G\) chains. J. Math. Anal. Appl. 418(2), 1047–1061 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    Google Scholar 

  32. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 2(72), 458–520 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fleming, W.H.: Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  34. Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus of Variations. I. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37. Springer, Berlin (1998). (Cartesian currents)

    Google Scholar 

  35. Giaquinta, M., Mucci, D.: The BV-energy of maps into a manifold: relaxation and density results. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 5(4), 483–548 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Golovaty, D., Montero, J.A.: On minimizers of a Landau–de Gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 213(2), 447–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hajłasz, P.: Approximation of Sobolev mappings. Nonlinear Anal. Theory 22(12), 1579–1591 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hang, F., Lin, F.-H.: Topology of Sobolev mappings. II. Acta Math. 191(1), 55–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hardt, R., Kinderlehrer, D., Lin, F.-H.: Existence and partial regularity of static liquid crystal configurations. Commun. Math. Phys. 105(4), 547–570 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hardt, R., Lin, F.-H.: Mappings minimizing the \(L^p\) norm of the gradient. Commun. Pure Appl. Math. 40(5), 555–588 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hardt, R., Rivière, T.: Connecting topological Hopf singularities. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 2(2), 287–344 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  43. Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics, vol. 33. Springer, New York (1976)

    Google Scholar 

  44. Ignat, R.: The space \({BV}({S}^2,{S}^1)\): minimal connection and optimal lifting. Annales de l’Institut Henri Poincare 22(3), 283–302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ignat, R., Lamy, X.: Lifting of \({\mathbb{RP}}^{d-1}\)-valued maps in BV and applications to uniaxial \(Q\)-tensors. With an appendix on an intrinsic BV-energy for manifold-valued maps. Preprint arXiv:1706.01281 (2017)

  46. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jerrard, R.L., Soner, H.M.: The Jacobian and the Ginzburg–Landau energy. Calc. Var. Partial Differ. Equ. 14(2), 151–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jerrard, R.L., Soner, H.M.: Functions of bounded higher variation. Indiana Univ. Math. J. 51(3), 645–677 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Lin, F.-H., Rivière, T.: Complex Ginzburg–Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. (JEMS) 1(3), 237–311 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Majumdar, A., Zarnescu, A.: Landau–De Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979)

    Article  MathSciNet  Google Scholar 

  52. Pakzad, M.R.: Weak density of smooth maps in \({W}^{1, 1}({M},{N})\) for non-abelian \(\pi _1({N})\). Ann. Glob. Anal. Geom. 23(1), 1–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  53. Pakzad, M.R., Rivière, T.: Weak density of smooth maps for the Dirichlet energy between manifolds. Geom. Funct. Anal. 13(1), 223–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rivière, T.: Dense subsets of \(H^{1/2}(S^2, S^1)\). Ann. Glob. Anal. Geom. 18(5), 517–528 (2000)

    Article  MATH  Google Scholar 

  55. Sandier, É.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998). (see Erratum, ibidem 171, 1, 233 (2000))

    Article  MathSciNet  MATH  Google Scholar 

  56. Sandier, É., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model. Progress in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  57. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18(2), 253–268 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  58. White, B.: The deformation theorem for flat chains. Acta Math. 183(2), 255–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. White, B.: Rectifiability of flat chains. Ann. Math. (2) 150(1), 165–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. White, B.: Topics in Geometric Measure Theory. Lecture notes taken by O. Chodosh for a course given at Stanford University. https://web.math.princeton.edu/~ochodosh/GMTnotes.pdf (2012). Accessed 18 Mar 2019

  61. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonimous referees for their useful comments. G.C.’s research was supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 291053; by the Basque Government through the BERC 2018–2021 Program; by the Spanish Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718; and by the Spanish Ministry of Economy and Competitiveness: MTM2017-82184-R. G. O. was partially supported by GNAMPA-INdAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Canevari.

Additional information

Communicated by C. De Lellis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canevari, G., Orlandi, G. Topological singular set of vector-valued maps, I: applications to manifold-constrained Sobolev and BV spaces. Calc. Var. 58, 72 (2019). https://doi.org/10.1007/s00526-019-1501-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-019-1501-8

Mathematics Subject Classification

Navigation