Skip to main content
Log in

Recognizing the flat torus among \(\mathsf{RCD}^*(0,N)\) spaces via the study of the first cohomology group

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove that if the dimension of the first cohomology group of a \(\mathsf{RCD}^*(0,N)\) space is N, then the space is a flat torus. This generalizes a classical result due to Bochner to the non-smooth setting and also provides a first example where the study of the cohomology groups in such synthetic framework leads to geometric consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Transport equation and Cauchy problem for \(BV\) vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163, 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio, L., Mondino, A., Savaré, G.: On the Bakry–Émery condition, the gradient estimates and the local-to-global property of \({RCD}^*({K}, {N})\) metric measure spaces. J. Geom. Anal. 26, 1–33 (2014)

    Google Scholar 

  7. Ambrosio, L., Trevisan, D.: Well posedness of Lagrangian flows and continuity equations in metric measure spaces. Anal. PDE 7, 1179–1234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio, L., Trevisan, D.: Lecture notes on the DiPerna–Lions theory in abstract measure spaces. Ann. Fac. Sci. de Toulouse (2015). arXiv:1505.05292

  9. Anderson, M.T.: Short geodesics and gravitational instantons. J. Differ. Geom. 31, 265–275 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheeger, J., Colding, T.H.: On the structure of spaces with Ricci curvature bounded below. I. J. Differ. Geom. 46, 406–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colding, T.H.: Ricci curvature and volume convergence. Ann. Math. 2(145), 477–501 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garrett, P.: Closed topological subgroups of \(\mathbb{R}^n\). www-users.math.umn.edu/~garrett/m/mfms/notes_c/discrete_sbgps.pdf. Accessed 15 Feb 2018

  15. Gigli, N.: Lecture notes on differential calculus on \({\rm RCD}\) spaces. Preprint. arXiv:1703.06829

  16. Gigli, N.: The splitting theorem in non-smooth context. Preprint (2013). arXiv:1302.5555

  17. Gigli, N.: Nonsmooth differential geometry–an approach tailored for spaces with Ricci curvature bounded from below. Mem. Am. Math. Soc. (2014). arXiv:1407.0809

  18. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2, 169–213 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236, vi+91 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Gigli, N., Han, B.: Sobolev spaces on warped products. Preprint (2015). arXiv:1512.03177

  21. Gigli, N., Han, B.: The continuity equation on metric measure spaces. Calc. Var. Partial Differ. Equ. 53, 149–177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gigli, N., Mosconi, S.: The abstract Lewy-Stampacchia inequality and applications. J. Math. Pures Appl. 9(104), 258–275 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Gigli, N., Pasqualetto, E.: Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces. Preprint (2016). arXiv:1611.09645

  24. Gigli, N., Rajala, T., Sturm, K.-T.: Optimal maps and exponentiation on finite-dimensional spaces with Ricci curvature bounded from below. J. Geom. Anal. 26, 2914–2929 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, B.: Ricci tensor on \({\rm RCD}^*(K,N)\) spaces. Preprint. arXiv:1412.0441

  26. Honda, S.: Spectral convergence under bounded Ricci curvature. J. Funct. Anal. 273, 1577–1662 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 2(169), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Menguy, X.: Noncollapsing examples with positive Ricci curvature and infinite topological type. Geom. Funct. Anal. 10, 600–627 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mondino, A., Wei, G.: On the universal cover and the fundamental group of an \(\text{RCD}(K,N)\)-space. Crelle J. arXiv:1605.02854

  30. Perelman, G.: Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers. In: Comparison Geometry (Berkeley, CA, 1993–94), vol. 30 of Mathematical Sciences Research Institute Publications, pp. 157–163. Cambridge University Press, Cambridge (1997)

  31. Petersen, P.: Riemannian Geometry, vol. 171 of Graduate Texts in Mathematics, 3rd edn. Springer, Cham (2016)

    Google Scholar 

  32. Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \({\rm RCD}(K,\infty )\) metric measure spaces. Discrete Contin. Dyn. Syst. 34, 1641–1661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sha, J.-P., Yang, D.: Examples of manifolds of positive Ricci curvature. J. Differ. Geom. 29, 95–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoam. 16, 243–279 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the MIUR SIR-Grant ‘Nonsmooth Differential Geometry’ (RBSI147UG4). We wish to thank the referee for the very careful reading and the detailed report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Gigli.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gigli, N., Rigoni, C. Recognizing the flat torus among \(\mathsf{RCD}^*(0,N)\) spaces via the study of the first cohomology group. Calc. Var. 57, 104 (2018). https://doi.org/10.1007/s00526-018-1377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1377-z

Mathematics Subject Classification

Navigation