Skip to main content

Advertisement

Log in

Association between cord blood cystatin C levels and early mortality of neonates with congenital abnormalities of the kidney and urinary tract: a single-center, retrospective cohort study

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Some fetuses with congenital abnormalities of the kidney and urinary tract (CAKUT) have severe renal dysfunction during the prenatal period that can result in oligohydramnios, pulmonary hypoplasia, and death following birth. We hypothesized that cord blood cystatin C (CysC) levels are elevated in neonates who have life-threatening pulmonary hypoplasia and oligohydramnios due to severe renal dysfunction. In this study we compared cord blood CysC levels between a non-survivor group with CAKUT and a survivor group.

Methods

This was a single-center, retrospective cohort study conducted between January 2007 and December 2015. Eighty-seven neonates who were prenatally diagnosed with CAKUT were included in the study. Cord blood CysC and creatinine levels were compared between the survivor and non-survivor groups at discharge from hospital.

Results

Of the 87 neonates enrolled in the study, 67 survived and 21 died before discharge. Median cord blood CysC levels were higher in the non-survivor group than in the survivor group (4.28 vs. 1.96 mg/L, respectively; p < 0.001). Cord blood creatinine levels were not significantly different between the two groups. In patients with oligohydramnios (n = 28), cord blood CysC levels were significantly higher in the non-survivor group than in the survivor group (4.28 vs. 2.23 mg/L, respectively; p = 0.002).

Conclusions

In this study population, cord blood CysC levels were significantly higher in the non-survivor group with CAKUT than in the survivor group. These results suggest that cord blood CysC levels may be a good marker of the severity of renal dysfunction at birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ichikawa I, Kuwayama F, Pope JC, Stephens FD, Miyazaki Y (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT. Kidney Int 61:889–898

    Article  PubMed  Google Scholar 

  2. Klaassen I, Neuhaus TJ, Mueller-Wiefel DE, Kemper MJ (2007) Antenatal oligohydramnios of renal origin: long-term outcome. Nephrol Dial Transplant 22:432–439

    Article  PubMed  Google Scholar 

  3. Parvex P, Combescure C, Rodriguez M, Birraux J, Girardin E (2014) Evaluation and predictive factors of renal function progression using cystatin C and creatinine in neonates born with CAKUT. Clin Nephrol 81:338–344

    Article  CAS  PubMed  Google Scholar 

  4. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, Innocenti ML, Somenzi D, Trivelli A, Caridi G, Izzi C, Scolari F, Mattioli G, Allegri L, Ghiggeri GM (2009) Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int 76:528–533

    Article  PubMed  Google Scholar 

  5. Joshi S, Kotecha S (2007) Lung growth and development. Early Hum Dev 83:789–794

    Article  CAS  PubMed  Google Scholar 

  6. Mehler K, Beck BB, Kaul I, Rahimi G, Hoppe B, Kribs A (2011) Respiratory and general outcome in neonates with renal oligohydramnios–a single-centre experience. Nephrol Dial Transplant 26:3514–3522

  7. Wu CS, Chen CM, Chou HC (2017) Pulmonary hypoplasia induced by oligohydramnios: findings from animal models and a population-based study. Pediatr Neonatol 58:3–7

  8. Morris RK, Malin GL, Quinlan-Jones E, Middleton LJ, Hemming K, Burke D, Daniels JP, Khan KS, Deeks J, Kilby MD (2013) Percutaneous vesicoamniotic shunting in lower urinary tract obstruction (PLUTO) collaborative group: percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet 382:1496–1506

    Article  PubMed  PubMed Central  Google Scholar 

  9. Laudy JA, Wladimiroff JW (2000) The fetal lung 2: pulmonary hypoplasia. Ultrasound Obstet Gynecol 16:482–494

    Article  CAS  PubMed  Google Scholar 

  10. Melo BF, Aguiar MB, Bouzada MC, Aguiar RL, Pereira AK, Paixao GM, Linhares MC, Valerio FC, Simoes E, Silva AC, Oliveira EA (2012) Early risk factors for neonatal mortality in CAKUT: analysis of 524 affected newborns. Pediatr Nephrol 27:965–972

    Article  PubMed  Google Scholar 

  11. Nef S, Neuhaus TJ, Sparta G, Weitz M, Buder K, Wisser J, Gobet R, Willi U, Laube GF (2016) Outcome after prenatal diagnosis of congenital anomalies of the kidney and urinary tract. Eur J Pediatr 175:667–676

    Article  PubMed  Google Scholar 

  12. Kumar M, Thakur S, Puri A, Shukla S, Sharma S, Perumal V, Chawla R, Gupta U (2014) Fetal renal anomaly: factors that predict survival. J Pediatr Urol 10:1001–1007

    Article  CAS  PubMed  Google Scholar 

  13. Treiber M, Pecovnik Balon B, Gorenjak M (2015) A new serum cystatin C formula for estimating glomerular filtration rate in newborns. Pediatr Nephrol 30:1297–1305

    Article  PubMed  Google Scholar 

  14. Parvex P, Combescure C, Rodriguez M, Girardin E (2012) Is cystatin C a promising marker of renal function, at birth, in neonates prenatally diagnosed with congenital kidney anomalies? Nephrol Dial Transplant 27:3477–3482

    Article  CAS  PubMed  Google Scholar 

  15. Demirel G, Celik IH, Canpolat FE, Erdeve O, Biyikli Z, Dilmen U (2013) Reference values of serum cystatin C in very low-birthweight premature infants. Acta Paediatr 102:e4–e7

    Article  CAS  PubMed  Google Scholar 

  16. Filler G (2015) A step forward towards accurately assessing glomerular filtration rate in newborns. Pediatr Nephrol 30:1209–1212

    Article  PubMed  Google Scholar 

  17. Armangil D, Yurdakok M, Canpolat FE, Korkmaz A, Yigit S, Tekinalp G (2008) Determination of reference values for plasma cystatin C and comparison with creatinine in premature infants. Pediatr Nephrol 23:2081–2083

    Article  PubMed  Google Scholar 

  18. Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, DeFreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164(1026–1031):e2

    Google Scholar 

  19. Phelan JP, Smith CV, Broussard P, Small M (1987) Amniotic fluid volume assessment with the four-quadrant technique at 36–42 weeks’ gestation. J Reprod Med 32:540–542

    CAS  PubMed  Google Scholar 

  20. Chamberlain PF, Manning FA, Morrison I, Harman CR, Lange IR (1984) Ultrasound evaluation of amniotic fluid volume. II. The relationship of increased amniotic fluid volume to perinatal outcome. Am J Obstet Gynecol 150:250–254

    Article  CAS  PubMed  Google Scholar 

  21. Askenazi SS, Perlman M (1979) Pulmonary hypoplasia: lung weight and radial alveolar count as criteria of diagnosis. Arch Dis Child 54:614–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laudy JA, Tibboel D, Robben SG, de Krijger RR, de Ridder MA, Wladimiroff JW (2002) Prenatal prediction of pulmonary hypoplasia: clinical, biometric, and Doppler velocity correlates. Pediatrics 109:250–258

    Article  PubMed  Google Scholar 

  23. Leonidas JC, Bhan I, Beatty EC (1982) Radiographic chest contour and pulmonary air leaks in oligohydramnios-related pulmonary hypoplasia (Potter’s syndrome). Investig Radiol 17:6–10

    Article  CAS  Google Scholar 

  24. Ishikura K, Uemura O, Ito S, Wada N, Hattori M, Ohashi Y, Hamasaki Y, Tanaka R, Nakanishi K, Kaneko T, Honda M (2013) Pre-dialysis chronic kidney disease in children: results of a nationwide survey in Japan. Nephrol Dial Transplant 28:2345–2355

    Article  CAS  PubMed  Google Scholar 

  25. Muller F, Dreux S, Audibert F, Chabaud JJ, Rousseau T, D’Herve D, Dumez Y, Ngo S, Gubler MC, Dommergues M (2004) Fetal serum β2-microglobulin and cystatin C in the prediction of post-natal renal function in bilateral hypoplasia and hyperechogenic enlarged kidneys. Prenat Diagn 24:327–332

    Article  PubMed  Google Scholar 

  26. Berry SM, Stone J, Norton ME, Johnson D, Berghella V; Society for Maternal-Fetal Medicine (2013) Fetal blood sampling. Am J Obstet Gynecol 209:170–180

  27. Aulbert W, Kemper MJ (2016) Severe antenatally diagnosed renal disorders: background, prognosis and practical approach. Pediatr Nephrol 31:563–574

    Article  PubMed  Google Scholar 

  28. Ikezumi Y, Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Fujita N, Akioka Y, Kaneko T, Iijima K, Honda M (2015) Beta-2 microglobulin-based equation for estimating glomerular filtration rates in Japanese children and adolescents. Clin Exp Nephrol 19:450–457

    Article  CAS  PubMed  Google Scholar 

  29. Revillard JP, Vincent C (1988) Structure and metabolism of beta-2-microglobulin. Contrib Nephrol 62:44–53

    Article  CAS  PubMed  Google Scholar 

  30. Spaggiari E, Stirnemann JJ, Heidet L, Dreux S, Ville Y, Oury JF, Delezoide AL, Muller F (2013) Outcome following prenatal diagnosis of severe bilateral renal hypoplasia. Prenat Diagn 33:1167–1172

    Article  CAS  PubMed  Google Scholar 

  31. Dommergues M, Muller F, Ngo S, Hohlfeld P, Oury JF, Bidat L, Mahieu-Caputo D, Sagot P, Body G, Favre R, Dumez Y (2000) Fetal serum beta2-microglobulin predicts postnatal renal function in bilateral uropathies. Kidney Int 58:312–316

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Tomotaki.

Ethics declarations

The study protocol was approved by the Institutional Review Board (No. 1605–06; July 21, 2016).

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomotaki, S., Toyoshima, K., Shimokaze, T. et al. Association between cord blood cystatin C levels and early mortality of neonates with congenital abnormalities of the kidney and urinary tract: a single-center, retrospective cohort study. Pediatr Nephrol 32, 2089–2095 (2017). https://doi.org/10.1007/s00467-017-3733-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-017-3733-1

Keywords

Navigation