Skip to main content

Advertisement

Log in

In-vitro regulation of odontogenic gene expression in human embryonic tooth cells and SHED cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The bud-to-cap stage transition during early tooth development is a time when the tooth-inducing potential becomes restricted to the mesenchyme. Several key genes, expressed in the mesenchyme at this stage, are an absolute requirement for the progression of tooth development. These include the transcription factors Msx1 and Pax9. The inductive potential of tooth mesenchyme cells is a key requisite for whole-tooth bioengineering and thus identification of cells that can retain this property following expansion in culture is an important as yet unresolved, goal. We show here that in-vitro culture of embryonic human tooth mesenchyme cells and SHED cells express low levels of PAX9 and MSX1 and that these levels can be significantly upregulated by activation of different signalling pathways. Such in-vitro manipulation may thus offer a simple way of maintaining/restoring/inducing the odontogenic-inducing capacity in mesenchymal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787–1795

    Article  PubMed  CAS  Google Scholar 

  • Arthur A, Shi S, Zannettino AC, Fujii N, Gronthos S, Koblar SA (2009) Implanted adult human dental pulp stem cells induce endogenous axon guidance. Stem Cells 27(9):2229–2237

    Article  PubMed  CAS  Google Scholar 

  • Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M (2010) Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 46(6):1639–1651

    Article  PubMed  Google Scholar 

  • Baltacioglu E, Tasdemir T, Yuva P, Celik D, Sukuroglu E (2011) Intentional replantation of periodontally hopeless teeth using a combination of enamel matrix derivative and demineralized freeze-dried bone allograft. Int J Periodontics Restorative Dent 31(1):75–81

    PubMed  Google Scholar 

  • Bei M, Maas R (1998) FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125(21):4325–4333

    PubMed  CAS  Google Scholar 

  • Cortellini P, Tonetti MS (2011) Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: a randomized-controlled trial in intra-bony defects. J Clin Periodontol 38(4):365–373

    Article  PubMed  Google Scholar 

  • d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162–1171

    Article  PubMed  Google Scholar 

  • Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186

    Article  PubMed  CAS  Google Scholar 

  • Duailibi MT, Duailibi SE, Young CS, Bartlett JD, Vacanti JP, Yelick PC (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83(7):523–528

    Article  PubMed  CAS  Google Scholar 

  • Fujita T, Yamamoto S, Ota M, Shibukawa Y, Yamada S (2011) Coverage of gingival recession defects using guided tissue regeneration with and without adjunctive enamel matrix derivative in a dog model. Int J Periodontics Restorative Dent 31(3):247–253

    PubMed  Google Scholar 

  • Graziano A, d'Aquino R, Laino G, Papaccio G (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4(1):21–26

    Article  PubMed  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Yamada Y, Nakamura S, Umemura E, Ito K, Ueda M (2011) Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology. J Endod 37(12):1647–1652

    Article  PubMed  Google Scholar 

  • Hu B, Nadiri A, Bopp-Kuchler S, Perrin-Schmitt F, Wang S, Lesot H (2005) Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history. Arch Oral Biol 50(2):131–136

    Article  PubMed  Google Scholar 

  • Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  PubMed  CAS  Google Scholar 

  • Ieong CC, Zhou XD, Li JY, Li W, Zhang LL (2011) Possibilities and potential roles of the functional peptides based on enamel matrix proteins in promoting the remineralization of initial enamel caries. Med Hypotheses 76(3):391–394

    Article  PubMed  CAS  Google Scholar 

  • Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc Natl Acad Sci USA 106(32):13475–13480

    Article  PubMed  CAS  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reitrative signalling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29

    Article  PubMed  CAS  Google Scholar 

  • Jo YY, Lee HJ, Kook SY, Choung HW, Park JY, Chung JH, Choung YH, Kim ES, Yang HC, Choung PH (2007) Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng 13(4):767–773

    Article  PubMed  CAS  Google Scholar 

  • Kapferer I, Schmidt S, Gstir R, Durstberger G, Huber LA, Vietor I (2011) Gene-expression profiles of epithelial cells treated with EMD in vitro: analysis using complementary DNA arrays. J Periodontal Res 46(1):118–125

    Article  PubMed  CAS  Google Scholar 

  • Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506

    Article  PubMed  Google Scholar 

  • Lesot H, Brook AH (2009) Epithelial histogenesis during tooth development. Arch Oral Biol 54(Suppl 1):S25–S33, Review

    Article  PubMed  CAS  Google Scholar 

  • Lumsden AGS (1988) Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103(Suppl):155–169

    PubMed  Google Scholar 

  • Mandler M, Neubüser A (2001) FGF signaling is necessary for the specification of the odontogenic mesenchyme. Dev Biol 240(2):548–559

    Article  PubMed  CAS  Google Scholar 

  • Mina M, Kollar EJ (1987) The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol 32:123–127

    Article  PubMed  CAS  Google Scholar 

  • Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T (2007) The development of a bioengineered organ germ method. Nat Method Mar 4(3):227–230

    Article  CAS  Google Scholar 

  • Neubüser A, Peters H, Ballings R, Martin GR (1997) Antagonistic interactions between FGF and BMP4 signaling pathways: A mechanism for positioning the sites of tooth formation. Cell 90:147–155

    Article  Google Scholar 

  • Ohazama A, Modino SA, Miletich I, Sharpe PT (2004) Stem-cell-based tissue engineering of murine teeth. J Dent Res 83(7):518–522

    Article  PubMed  CAS  Google Scholar 

  • Qu Z, Andrukhov O, Laky M, Ulm C, Matejka M, Dard M, Rausch-Fan X (2011) Effect of enamel matrix derivative on proliferation and differentiation of osteoblast cells grown on the titanium implant surface. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(4):517–522

    Article  PubMed  Google Scholar 

  • Rasperini G, Roccuzzo M, Francetti L, Acunzo R, Consonni D, Silvestri M (2011) Subepithelial connective tissue graft for treatment of gingival recessions with and without enamel matrix derivative: a multicenter, randomized controlled clinical trial. Int J Periodontics Restorative Dent 31(2):133–139

    PubMed  Google Scholar 

  • Schröen O, Sahrmann P, Roos M, Attin T, Schmidlin PR (2011) A survey on regenerative surgery performed by Swiss specialists in periodontology with special emphasis on the application of enamel matrix derivatives in infrabony defects. Schweiz Monatsschr Zahnmed 121(2):136–142

    PubMed  Google Scholar 

  • Silvestri M, Rasperini G, Milani S (2011) 120 infrabony defects treated with regenerative therapy: long-term results. J Periodontol 82(5):668–675

    Article  PubMed  Google Scholar 

  • Sugiyama M, Iohara K, Wakita H, Hattori H, Ueda M, Matsushita K, Nakashima M (2011) Dental pulp-derived CD31‾/CD146‾ side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats. Tissue Eng Part A 17(9–10):1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I, Mikkola M (2002) The role of growth factors in tooth development. Int Rev Cytol 217:93–135

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I, Sharpe PT (1997) Signalling networks regulating dental development. Mech Dev 67:111–123

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I, Keränen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18

    Article  PubMed  CAS  Google Scholar 

  • Tucker A, Sharpe P (2004) The cutting-edge of mammalian development: how the embryo makes teeth. Nat Rev 5:499–508

    CAS  Google Scholar 

  • Tucker AS, Al Khamis A, Sharpe PT (1998) Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme. Dev Dyn 212(4):533–539

    Article  PubMed  CAS  Google Scholar 

  • Volponi AA, Pang Y, Sharpe PT (2010) Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 20(12):715–722

    Article  PubMed  CAS  Google Scholar 

  • Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189(1–4):268–274

    Article  PubMed  Google Scholar 

  • Wang XJ, Huang H, Yang F, Xia LG, Zhang WJ, Jiang XQ, Zhang FQ (2011) Ectopic study of tissue-engineered bone complex with enamel matrix proteins, bone marrow stromal cells in porous calcium phosphate cement scaffolds, in nude mice. Cell Prolif 44(3):274–282

    Article  PubMed  Google Scholar 

  • Yalvac ME, Rizvanov AA, Kilic E, Sahin F, Mukhamedyarov MA, Islamov RR, Palotás A (2009) Potential role of dental stem cells in the cellular therapy of cerebral ischemia. Curr Pharm Des 15(33):3908–3916

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Kim EJ, Cho SW, Jung HS (2003) Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J Electron Microsc (Tokyo) 52(6):559–566

    Article  CAS  Google Scholar 

  • Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors and stem cells. Cell Res 15:301–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Dianne Gerelli of the HDBR for the human embryonic and fetal material that was provided by the Joint MRC (grant # G0700089)/ Wellcome Trust (grant # GR082557) Human Developmental Biology Resource (http://hdbr.org).

Financial support was provided by the NIHR Comprehensive Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Sharpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leone, A., Angelova Volponi, A., Renton, T. et al. In-vitro regulation of odontogenic gene expression in human embryonic tooth cells and SHED cells. Cell Tissue Res 348, 465–473 (2012). https://doi.org/10.1007/s00441-012-1379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1379-7

Keywords

Navigation