Skip to main content

Advertisement

Log in

An approach based on a genome-wide association study reveals candidate loci for narcolepsy

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness, cataplexy, and a pathological manifestation of rapid eye movement during sleep. Narcoleptic pathogenesis is triggered by both genetic and environmental factors. Recently, development of genome-wide association studies (GWAS) has identified new genetic factors, with many more susceptibility genes yet to be elucidated. Using a new approach that consists of a combination of GWAS and an extensive database search for candidate genes, we picked up 202 candidate genes and performed a replication study in 222 narcoleptic patients and 380 controls. Statistical analysis indicated that six genes, NFATC2, SCP2, CACNA1C, TCRA, POLE, and FAM3D, were associated with narcolepsy (P < 0.001). Some of these associations were further supported by gene expression analyses and an association study in essential hypersomnia (EHS), CNS hypersonia similar to narcolepsy. This novel approach will be applicable to other GWAS in the search of disease-related susceptibility genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CACNA1C :

Calcium channel voltage-dependent L-type alpha 1C

CHKB :

Choline kinase beta

CI:

Confidence interval

CSF:

Cerebrospinal fluid

CPT1B :

Carnitine palmitoyltransferase 1B

DAD :

Defender against cell death

EHS:

Essential hypersomnia

FAM3D :

Family with sequence similarity 3, member D

GWAS:

Genome-wide association study

HLA:

Human leukocyte antigen

HWE:

Hardy–Weinberg equilibrium

LD:

Linkage disequilibrium

NFATC2 :

Nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2

NLC1A :

Narcolepsy candidate-region 1 A

OR:

Odds ratio

POLE :

Polymerase (DNA directed), epsilon

REM:

Rapid eye movement

SCP2 :

Sterol carrier protein 2

SNP:

Single nucleotide polymorphism

TCRA :

T cell receptor alpha chain

TNFA :

Tumor necrosis factor alpha

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Curtis D (2007) Allelic association studies of genome-wide association data can reveal errors in marker position assignments. BMC Genet 8:30

    Article  PubMed  Google Scholar 

  • Dansen TB, Kops GJ, Denis S, Jelluma N, Wanders RJ, Bos JL, Burgering BM, Wirtz KW (2004) Regulation of sterol carrier protein gene expression by the forkhead transcription factor FOXO3a. J Lipid Res 45:81–88

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Article  CAS  PubMed  Google Scholar 

  • Gargus JJ (2009) Genetic calcium signaling abnormalities in the central nervous system: seizures, migraine, and autism. Ann N Y Acad Sci 1151:133–156

    Article  CAS  PubMed  Google Scholar 

  • Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV, Urban TJ, Heinzen EL, Qiu P, Bertelsen AH, Muir AJ, Sulkowski M, McHutchison JG, Goldstein DB (2009) Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401

    Article  CAS  PubMed  Google Scholar 

  • Gencik M, Dahmen N, Wieczorek S, Kasten M, Bierbrauer J, Anghelescu I, Szegedi A, Menezes Saecker AM, Epplen JT (2001) A prepro-orexin gene polymorphism is associated with narcolepsy. Neurology 56:115–117

    CAS  PubMed  Google Scholar 

  • Hallmayer J, Faraco J, Lin L, Hesselson S, Winkelmann J, Kawashima M, Mayer G, Plazzi G, Nevsimalova S, Bourgin P, Hong SS, Honda Y, Honda M, Hogl B, Longstreth WT Jr, Montplaisir J, Kemlink D, Einen M, Chen J, Musone SL, Akana M, Miyagawa T, Duan J, Desautels A, Erhardt C, Hesla PE, Poli F, Frauscher B, Jeong JH, Lee SP, Ton TG, Kvale M, Kolesar L, Dobrovolna M, Nepom GT, Salomon D, Wichmann HE, Rouleau GA, Gieger C, Levinson DF, Gejman PV, Meitinger T, Young T, Peppard P, Tokunaga K, Kwok PY, Risch N, Mignot E (2009) Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 41:708–711

    Article  CAS  PubMed  Google Scholar 

  • Hohjoh H, Nakayama T, Ohashi J, Miyagawa T, Tanaka H, Akaza T, Honda Y, Juji T, Tokunaga K (1999) Significant association of a single nucleotide polymorphism in the tumor necrosis factor-alpha (TNF-alpha) gene promoter with human narcolepsy. Tissue Antigens 54:138–145

    Article  CAS  PubMed  Google Scholar 

  • Hohjoh H, Terada N, Kawashima M, Honda Y, Tokunaga K (2000) Significant association of the tumor necrosis factor receptor 2 (TNFR2) gene with human narcolepsy. Tissue Antigens 56:446–448

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Juji T, Matsuki K, Naohara T, Satake M, Inoko H, Someya T, Harada S, Doi Y (1986) HLA-DR2 and Dw2 in narcolepsy and in other disorders of excessive somnolence without cataplexy. Sleep 9:133–142

    CAS  PubMed  Google Scholar 

  • Honda Y, Takahashi Y, Honda M, Watanabe Y, Sato T, Miki T, Kuwata S, Tokunaga K, Juji T (1998) Genetic aspects of narcolepsy. In: Hayaishi O, Inoue E (eds) Sleep and sleep disorders: from molecule to behavior. Academic Press, New York, pp 341–358

    Google Scholar 

  • Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed  Google Scholar 

  • Hungs M, Lin L, Okun M, Mignot E (2001) Polymorphisms in the vicinity of the hypocretin/orexin are not associated with human narcolepsy. Neurology 57:1893–1895

    CAS  PubMed  Google Scholar 

  • Juji T, Satake M, Honda Y, Doi Y (1984) HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens 24:316–319

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  CAS  PubMed  Google Scholar 

  • Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler D, Kent WJ (2003) The UCSC genome browser database. Nucleic Acids Res 31:51–54

    Article  CAS  PubMed  Google Scholar 

  • Khatami R, Maret S, Werth E, Retey J, Schmid D, Maly F, Tafti M, Bassetti CL (2004) Monozygotic twins concordant for narcolepsy-cataplexy without any detectable abnormality in the hypocretin (orexin) pathway. Lancet 363:1199–1200

    Article  CAS  PubMed  Google Scholar 

  • Komada Y, Inoue Y, Mukai J, Shirakawa S, Takahashi K, Honda Y (2005) Difference in the characteristics of subjective and objective sleepiness between narcolepsy and essential hypersomnia. Psychiatry Clin Neurosci 59:194–199

    Article  PubMed  Google Scholar 

  • Krahn LE, Black JL, Silber MH (2001) Narcolepsy: new understanding of irresistible sleep. Mayo Clin Proc 76:185–194

    Article  CAS  PubMed  Google Scholar 

  • Langdon N, Welsh KI, van Dam M, Vaughan RW, Parkes D (1984) Genetic markers in narcolepsy. Lancet 2:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376

    Article  CAS  PubMed  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913

    Article  CAS  PubMed  Google Scholar 

  • Matsuki K, Juji T, Tokunaga K, Naohara T, Satake M, Honda Y (1985) Human histocompatibility leukocyte antigen (HLA) haplotype frequencies estimated from the data on HLA class I, II, and III antigens in 111 Japanese narcoleptics. J Clin Invest 76:2078–2083

    Article  CAS  PubMed  Google Scholar 

  • McCarthy MI, Hirschhorn JN (2008) Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 17:R156–R165

    Article  CAS  PubMed  Google Scholar 

  • Mignot E (1998) Genetic and familial aspects of narcolepsy. Neurology 50:S16–S22

    CAS  PubMed  Google Scholar 

  • Mignot E, Lin L, Rogers W, Honda Y, Qiu X, Lin X, Okun M, Hohjoh H, Miki T, Hsu S, Leffell M, Grumet F, Fernandez-Vina M, Honda M, Risch N (2001) Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet 68:686–699

    Article  CAS  PubMed  Google Scholar 

  • Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, Vankova J, Black J, Harsh J, Bassetti C, Schrader H, Nishino S (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59:1553–1562

    Article  PubMed  Google Scholar 

  • Miyagawa T, Hohjoh H, Honda Y, Juji T, Tokunaga K (2000) Identification of a telomeric boundary of the HLA region with potential for predisposition to human narcolepsy. Immunogenetics 52:12–18

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa T, Kawashima M, Nishida N, Ohashi J, Kimura R, Fujimoto A, Shimada M, Morishita S, Shigeta T, Lin L, Hong SC, Faraco J, Shin YK, Jeong JH, Okazaki Y, Tsuji S, Honda M, Honda Y, Mignot E, Tokunaga K (2008) Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet 40:1324–1328

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa T, Honda M, Kawashima M, Shimada M, Tanaka S, Honda Y, Tokunaga K (2009) Polymorphism located between CPT1B and CHKB, and HLA-DRB1*1501-DQB1*0602 haplotype confer susceptibility to CNS hypersomnias (essential hypersomnia). PLoS One 4:e5394

    Article  PubMed  Google Scholar 

  • Miyagawa T, Honda M, Kawashima M, Shimada M, Tanaka S, Honda Y, Tokunaga K (2010) Polymorphism located in TCRA locus confers susceptibility to essential hypersomnia with HLA-DRB1*1501-DQB1*0602 haplotype. J Hum Genet 55:63–65

    Article  CAS  PubMed  Google Scholar 

  • Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E, Owen MJ, O’Donovan MC (2009) Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 14:252–260

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Miura M, Honda M, Miki T, Honda Y, Arinami T (2000) Linkage of human narcolepsy with HLA association to chromosome 4p13–q21. Genomics 65:84–86

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Tanabe T, Takasu M, Suyama A, Tokunaga K (2007) Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem 364:78–85

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40

    Article  CAS  PubMed  Google Scholar 

  • Ohba T, Rennert H, Pfeifer SM, He Z, Yamamoto R, Holt JA, Billheimer JT, Strauss JF 3rd (1994) The structure of the human sterol carrier protein X/sterol carrier protein 2 gene (SCP2). Genomics 24:370–374

    Article  CAS  PubMed  Google Scholar 

  • Olafsdottir BR, Rye DB, Scammell TE, Matheson JK, Stefansson K, Gulcher JR (2001) Polymorphisms in hypocretin/orexin pathway genes and narcolepsy. Neurology 57:1896–1899

    CAS  PubMed  Google Scholar 

  • Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques Suppl:56-8, 60-1

  • Overeem S, Mignot E, van Dijk JG, Lammers GJ (2001) Narcolepsy: clinical features, new pathophysiologic insights, and future perspectives. J Clin Neurophysiol 18:78–105

    Article  CAS  PubMed  Google Scholar 

  • Pattyn F, Speleman F, De Paepe A, Vandesompele J (2003) RTPrimerDB: the real-time PCR primer and probe database. Nucleic Acids Res 31:122–123

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, Nevsimalova S, Aldrich M, Reynolds D, Albin R, Li R, Hungs M, Pedrazzoli M, Padigaru M, Kucherlapati M, Fan J, Maki R, Lammers GJ, Bouras C, Kucherlapati R, Nishino S, Mignot E (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997

    Article  CAS  PubMed  Google Scholar 

  • Scammell TE, Nishino S, Mignot E, Saper CB (2001) Narcolepsy and low CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology 56:1751–1753

    CAS  PubMed  Google Scholar 

  • Seedorf U, Ellinghaus P, Roch Nofer J (2000) Sterol carrier protein-2. Biochim Biophys Acta 1486:45–54

    CAS  PubMed  Google Scholar 

  • Sikder D, Kodadek T (2007) The neurohormone orexin stimulates hypoxia-inducible factor-1 activity. Genes Dev 21:2995–3005

    Article  CAS  PubMed  Google Scholar 

  • Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    Article  CAS  PubMed  Google Scholar 

  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  CAS  PubMed  Google Scholar 

  • Soldatov NM (1994) Genomic structure of human L-type Ca2+ channel. Genomics 22:77–87

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  CAS  PubMed  Google Scholar 

  • Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089–8096 discussion 8086-8

    Article  CAS  PubMed  Google Scholar 

  • The International HapMap Project (2003) The International HapMap Project. Nature 426: 789-96

  • The International HapMap Project (2005) A haplotype map of the human genome. Nature 437: 1299-320

    Google Scholar 

  • Wieczorek S, Gencik M, Rujescu D, Tonn P, Giegling I, Epplen JT, Dahmen N (2003) TNFA promoter polymorphisms and narcolepsy. Tissue Antigens 61:437–442

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Zhao H (2009) Statistical power of model selection strategies for genome-wide association studies. PLoS Genet 5:e1000582

    Article  PubMed  Google Scholar 

  • Youn HD, Chatila TA, Liu JO (2000) Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 19:4323–4331

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Sun LJ, Dotsch V, Wagner G, Verdine GL (1998) Solution structure of the core NFATC1/DNA complex. Cell 92:687–696

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Xu G, Patel A, McLaughlin MM, Silverman C, Knecht K, Sweitzer S, Li X, McDonnell P, Mirabile R, Zimmerman D, Boyce R, Tierney LA, Hu E, Livi GP, Wolf B, Abdel-Meguid SS, Rose GD, Aurora R, Hensley P, Briggs M, Young PR (2002) Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics 80:144–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all participants in this study. This study was supported by Grants-in-Aid for Scientific Research on Priority Areas ‘Comprehensive Genomics’ and ‘Applied Genomics’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by a Grant-in-Aid for Young Scientists (B), Astellas Foundation for Research on Metabolic Disorders, Takeda Science Foundation, Mitsubishi Pharma Research Foundation and Kowa Life Science Foundation. Ethical approval was obtained from the local institutional review boards of all collaborative organizations. Informed consent was obtained from all subjects.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Miyagawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M., Miyagawa, T., Kawashima, M. et al. An approach based on a genome-wide association study reveals candidate loci for narcolepsy. Hum Genet 128, 433–441 (2010). https://doi.org/10.1007/s00439-010-0862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0862-z

Keywords

Navigation