Skip to main content

Advertisement

Log in

Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Intraductal oncocytic papillary neoplasm (IOPN) of the pancreas is classified as a variant of intraductal papillary mucinous neoplasm (IPMN) in the WHO guidelines. However, the neoplastic cells of IOPNs are unique, with distinctive architecture/oncocytic cytoplasm. Although molecular/immunohistochemical features of other IPMN variants have been extensively studied, those of IOPNs have not been well characterized. Expression profile of antibodies associated with genetic alterations previously described for ductal adenocarcinomas (DAs) and IPMNs (SMAD4/β-catenin/p53/mesothelin/claudin-4) as well as antibodies to mucins and differentiation markers [MUC1/MUC2/MUC5AC/MUC6/CDX2/hepatocyte paraffin-1 (HepPar-1)] was investigated in 24 IOPNs and 22 IPMNs to assess the similarities/differences between these tumors. Expression of mesothelin and claudin-4 was dissimilar between these tumor types: A higher proportion of IOPNs labeled with mesothelin [21/24 (87.5 %) of IOPNs, 6/22 (27 %) of IPMNs, p < 0.001], while the reverse was true for claudin-4 [2/23 (9 %) of IOPNs, 9/22 (41 %) of IPMNs, p = 0.01]. The results of immunolabeling for SMAD4/β-catenin/p53 were similar in both: None of the cases showed SMAD4 loss in the intraductal components, and only 1/21 (5 %) of IOPNs and 2/22 (9 %) of IPMNs revealed abnormal β-catenin expression (p = 0.49). Nuclear p53 accumulation was seen mostly in architecturally complex/high-grade dysplasia areas in both. Immunolabeling for MUC proteins showed that almost all lesions expressed MUC5AC. Twelve of the 24 (50 %) IOPNs and 6/22 (27 %) of IPMNs (p = 0.11) labeled for MUC1, whereas 7/24 (29 %) of IOPNs and 10/22 (45 %) of IPMNs labeled for MUC2 (p = 0.25). MUC6 was expressed in 8/9 (89 %) of IOPNs (strong) and 6/21 (29 %) of IPMNs (weak) (p = 0.002). Fourteen of the 23 (61 %) IOPNs and 4/22 (18 %) of IPMNs labeled for HepPar-1 (p = 0.003). These results show that IOPNs have distinct immunoprofile and provide support for the proposition that IOPN is a distinct entity developing through a mechanism different from other pancreatic ductal neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adsay NV, Adair CF, Heffess CS, Klimstra DS (1996) Intraductal oncocytic papillary neoplasms of the pancreas. Am J Surg Pathol 20(8):980–994

    Article  CAS  PubMed  Google Scholar 

  2. Adsay NV, Kloeppel G, Fukushima N, Offerhaus GJ, Furukawa N (2010) Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH, Theise ND (eds) WHO classification of tumors. WHO Press, Lyon, pp. 304–313

    Google Scholar 

  3. Jyotheeswaran S, Zotalis G, Penmetsa P, Levea CM, Schoeniger LO, Shah AN (1998) A newly recognized entity: intraductal “oncocytic” papillary neoplasm of the pancreas. Am J Gastroenterol 93(12):2539–2543

    CAS  PubMed  Google Scholar 

  4. Adsay NV, Longnecker DS, Klimstra DS (2000) Pancreatic tumors with cystic dilatation of the ducts: intraductal papillary mucinous neoplasms and intraductal oncocytic papillary neoplasms. Semin Diagn Pathol 17(1):16–30

    CAS  PubMed  Google Scholar 

  5. D’Angelica M, Brennan MF, Suriawinata AA, Klimstra D, Conlon KC (2004) Intraductal papillary mucinous neoplasms of the pancreas: an analysis of clinicopathologic features and outcome. Ann Surg 239(3):400–408

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sohn TA, Yeo CJ, Cameron JL, et al. (2004) Intraductal papillary mucinous neoplasms of the pancreas: an updated experience. Ann Surg 239(6):788–797 discussion 797-789

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reid MD, Stallworth CR, Lewis MM, et al. (2015) Cytopathologic diagnosis of oncocytic type intraductal papillary mucinous neoplasm: criteria and clinical implications of accurate diagnosis. Cancer Cytopathol 124(2):122–134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yonezawa S, Taira M, Osako M, et al. (1998) MUC-1 mucin expression in invasive areas of intraductal papillary mucinous tumors of the pancreas. Pathol Int 48(4):319–322

    Article  CAS  PubMed  Google Scholar 

  9. Yonezawa S, Horinouchi M, Osako M, et al. (1999) Gene expression of gastric type mucin (MUC5AC) in pancreatic tumors: its relationship with the biological behavior of the tumor. Pathol Int 49(1):45–54

    Article  CAS  PubMed  Google Scholar 

  10. Luttges J, Zamboni G, Longnecker D, Kloppel G (2001) The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol 25(7):942–948

    Article  CAS  PubMed  Google Scholar 

  11. Adsay NV, Merati K, Andea A, et al. (2002) The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol 15(10):1087–1095

    Article  PubMed  Google Scholar 

  12. Biankin AV, Biankin SA, Kench JG, et al. (2002) Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut 50(6):861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakamura A, Horinouchi M, Goto M, et al. (2002) New classification of pancreatic intraductal papillary-mucinous tumour by mucin expression: its relationship with potential for malignancy. J Pathol 197(2):201–210

    Article  PubMed  Google Scholar 

  14. Terris B, Dubois S, Buisine MP, et al. (2002) Mucin gene expression in intraductal papillary-mucinous pancreatic tumours and related lesions. J Pathol 197(5):632–637

    Article  CAS  PubMed  Google Scholar 

  15. Adsay NV, Merati K, Basturk O, et al. (2004) Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol 28(7):839–848

    Article  PubMed  Google Scholar 

  16. Levi E, Klimstra DS, Andea A, Basturk O, Adsay NV (2004) MUC1 and MUC2 in pancreatic neoplasia. J Clin Pathol 57(5):456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furukawa T, Kloppel G, Volkan Adsay N, et al. (2005) Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch 447(5):794–799

    Article  PubMed  Google Scholar 

  18. Basturk O, Khayyata S, Klimstra DS, et al. (2010) Preferential expression of MUC6 in oncocytic and pancreatobiliary types of intraductal papillary neoplasms highlights a pyloropancreatic pathway, distinct from the intestinal pathway, in pancreatic carcinogenesis. Am J Surg Pathol 34(3):364–370

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schonleben F, Qiu W, Bruckman KC, et al. (2007) BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett 249(2):242–248

    Article  PubMed  CAS  Google Scholar 

  20. Sessa F, Solcia E, Capella C, et al. (1994) Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch 425(4):357–367

    Article  CAS  PubMed  Google Scholar 

  21. Kitago M, Ueda M, Aiura K, et al. (2004) Comparison of K-ras point mutation distributions in intraductal papillary-mucinous tumors and ductal adenocarcinoma of the pancreas. Int J Cancer 110(2):177–182

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Jiao Y, Dal Molin M, et al. (2011) Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A 108(52):21188–21193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlitter AM, Born D, Bettstetter M, et al. (2014) Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways. Mod Pathol 27(1):73–86

    Article  CAS  PubMed  Google Scholar 

  24. Jang JY, Park YC, Song YS, et al. (2009) Increased K-ras mutation and expression of S100 A4 and MUC2 protein in the malignant intraductal papillary mucinous tumor of the pancreas. J Hepato-Biliary-Pancreat Surg 16(5):668–674

    Article  Google Scholar 

  25. Yamaguchi K, Chijiiwa K, Noshiro H, Torata N, Kinoshita M, Tanaka M (1999) Ki-ras codon 12 point mutation and p53 mutation in pancreatic diseases. Hepato-Gastroenterology 46(28):2575–2581

    CAS  PubMed  Google Scholar 

  26. Sasaki S, Yamamoto H, Kaneto H, et al. (2003) Differential roles of alterations of p53, p16, and SMAD4 expression in the progression of intraductal papillary-mucinous tumors of the pancreas. Oncol Rep 10(1):21–25

    CAS  PubMed  Google Scholar 

  27. Amato E, Molin MD, Mafficini A, et al. (2014) Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas. J Pathol 233(3):217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hruban RH, Wilentz RE, Kern SE (2000) Genetic progression in the pancreatic ducts. Am J Pathol 156(6):1821–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iacobuzio-Donahue CA, Klimstra DS, Adsay NV, et al. (2000) Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol 157(3):755–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iacobuzio-Donahue CA, Wilentz RE, Argani P, et al. (2000) Dpc4 protein in mucinous cystic neoplasms of the pancreas: frequent loss of expression in invasive carcinomas suggests a role in genetic progression. Am J Surg Pathol 24(11):1544–1548

    Article  CAS  PubMed  Google Scholar 

  31. Inoue H, Furukawa T, Sunamura M, Takeda K, Matsuno S, Horii A (2001) Exclusion of SMAD4 mutation as an early genetic change in human pancreatic ductal tumorigenesis. Genes Chromosomes Cancer 31(3):295–299

    Article  CAS  PubMed  Google Scholar 

  32. Furukawa T, Kuboki Y, Tanji E, et al. (2011) Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep 1:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dal Molin M, Matthaei H, Wu J, et al. (2013) Clinicopathological correlates of activating GNAS mutations in intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg Oncol 20(12):3802–3808

    Article  PubMed  Google Scholar 

  34. Tan MC, Basturk O, Brannon AR, et al. (2015) GNAS and KRAS mutations define separate progression pathways in intraductal papillary mucinous neoplasm-associated carcinoma. J Am Coll Surg 220(5):845–854 e841

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang X, Hao HX, Growney JD, et al. (2013) Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 110(31):12649–12654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schonleben F, Qiu W, Remotti HE, Hohenberger W, Su GH (2008) PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas. Langenbeck’s Arch Surg 393(3):289–296

    Article  Google Scholar 

  37. Patel SA, Adams R, Goldstein M, Moskaluk CA (2002) Genetic analysis of invasive carcinoma arising in intraductal oncocytic papillary neoplasm of the pancreas. Am J Surg Pathol 26(8):1071–1077

    Article  PubMed  Google Scholar 

  38. Xiao HD, Yamaguchi H, Dias-Santagata D, et al. (2011) Molecular characteristics and biological behaviours of the oncocytic and pancreatobiliary subtypes of intraductal papillary mucinous neoplasms. J Pathol 224(4):508–516

    Article  CAS  PubMed  Google Scholar 

  39. Mohri D, Asaoka Y, Ijichi H, et al. (2012) Different subtypes of intraductal papillary mucinous neoplasm in the pancreas have distinct pathways to pancreatic cancer progression. J Gastroenterol 47(2):203–213

    Article  CAS  PubMed  Google Scholar 

  40. Basturk O, Tan M, Bhanot U et al (2016) The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Mod Pathol

  41. Adsay V, Mino-Kenudson M, Furukawa T, et al. (2016) Pathologic evaluation and reporting of intraductal papillary mucinous neoplasms of the pancreas and other Tumoral intraepithelial neoplasms of pancreatobiliary tract: recommendations of Verona consensus meeting. Ann Surg 263(1):162–177

    Article  PubMed  Google Scholar 

  42. Basturk O, Hong SM, Wood LD, et al. (2015) A revised classification system and recommendations from the Baltimore consensus meeting for neoplastic precursor lesions in the pancreas. Am J Surg Pathol 39(12):1730–1741

    Article  PubMed  Google Scholar 

  43. Marchegiani G, Mino-Kenudson M, Ferrone CR, Warshaw AL, Lillemoe KD, Fernandez-del CC (2015) Oncocytic-type intraductal papillary mucinous neoplasms: a unique malignant pancreatic tumor with good long-term prognosis. J Am Coll Surg 220(5):839–844

    Article  PubMed  Google Scholar 

  44. Askan G, Klimstra D, Adsay V, et al. (2016) “Oncocytic-type” of intraductal papillary mucinous neoplasm (IPMN): an analysis of 25 cases (abstract). Lab Investig 96(S1):1740

    Google Scholar 

  45. Terris B, Blaveri E, Crnogorac-Jurcevic T, et al. (2002) Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol 160(5):1745–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yonezawa S, Nakamura A, Horinouchi M, Sato E (2002) The expression of several types of mucin is related to the biological behavior of pancreatic neoplasms. J Hepato-Biliary-Pancreat Surg 9(3):328–341

    Article  Google Scholar 

  47. Hruban RH, Takaori K, Klimstra DS, et al. (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28(8):977–987

    Article  PubMed  Google Scholar 

  48. Sato N, Fukushima N, Maitra A, et al. (2004) Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am J Pathol 164(3):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Argani P, Iacobuzio-Donahue C, Ryu B, et al. (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7(12):3862–3868

    CAS  PubMed  Google Scholar 

  50. Ordonez NG (2003) Application of mesothelin immunostaining in tumor diagnosis. Am J Surg Pathol 27(11):1418–1428

    Article  PubMed  Google Scholar 

  51. Ryu B, Jones J, Blades NJ, et al. (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large-scale serial analysis of gene expression. Cancer Res 62(3):819–826

    CAS  PubMed  Google Scholar 

  52. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96(2):511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162(4):1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maitra A, Iacobuzio-Donahue C, Rahman A, et al. (2002) Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays: sea urchin fascin homolog and heat shock protein 47. Am J Clin Pathol 118(1):52–59

    Article  CAS  PubMed  Google Scholar 

  55. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, et al. (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160(4):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Allen A, Hutton DA, Pearson JP (1998) The MUC2 gene product: a human intestinal mucin. Int J Biochem Cell Biol 30(7):797–801

    Article  CAS  PubMed  Google Scholar 

  57. Abraham SC, Klimstra DS, Wilentz RE, et al. (2002) Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol 160(4):1361–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abraham SC, Wu TT, Klimstra DS, et al. (2001) Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas: frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol 159(5):1619–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA (2000) Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding an anti-adhesion molecule. Int J Cancer 88(4):507–518

    Article  CAS  PubMed  Google Scholar 

  60. Velcich A, Yang W, Heyer J, et al. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295(5560):1726–1729

    Article  CAS  PubMed  Google Scholar 

  61. Adsay NV, Conlon KC, Zee SY, Brennan MF, Klimstra DS (2002) Intraductal papillary-mucinous neoplasms of the pancreas: an analysis of in situ and invasive carcinomas in 28 patients. Cancer 94(1):62–77

    Article  PubMed  Google Scholar 

  62. Adsay NV (2006) Role of MUC genes and mucins in pancreatic neoplasia. Am J Gastroenterol 101(10):2330–2332

    Article  CAS  PubMed  Google Scholar 

  63. Pang Y, von Turkovich M, Wu H, et al. (2006) The binding of thyroid transcription factor-1 and hepatocyte paraffin 1 to mitochondrial proteins in hepatocytes: a molecular and immunoelectron microscopic study. Am J Clin Pathol 125(5):722–726

    Article  CAS  PubMed  Google Scholar 

  64. Lugli A, Tornillo L, Mirlacher M, Bundi M, Sauter G, Terracciano LM (2004) Hepatocyte paraffin 1 expression in human normal and neoplastic tissues: tissue microarray analysis on 3,940 tissue samples. Am J Clin Pathol 122(5):721–727

    Article  CAS  PubMed  Google Scholar 

  65. Martin RC, Klimstra DS, Schwartz L, Yilmaz A, Blumgart LH, Jarnagin W (2002) Hepatic intraductal oncocytic papillary carcinoma. Cancer 95(10):2180–2187

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Tanisha Daniel for her assistance during manuscript preparation and Allyne Manzo and Lorraine Corsale for their assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olca Basturk or David S. Klimstra.

Ethics declarations

The study was performed with approval of the Institutional Review Board and in accordance with Health Insurance Portability and Accountability Act regulations.

Funding

This work has been supported by the Cancer Center Support Grant (CCSG)/Core Grant/P30 CA008748.

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basturk, O., Chung, S.M., Hruban, R.H. et al. Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal papillary mucinous neoplasms of the pancreas. Virchows Arch 469, 523–532 (2016). https://doi.org/10.1007/s00428-016-2014-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-016-2014-x

Keywords

Navigation