Skip to main content

Advertisement

Log in

Shape optimization of material inclusions in dielectric elastomer composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In recent years, dielectric elastomers became a new alternative in the field of actuation technology. Because of the softness of these materials, they can be deformed in a finite strain regime under the application of electric fields. Due to the low relative permittivity, the electromechanical coupling is weak which makes large electric fields in the range of 20–30 MV/m necessary for large actuation purposes. To overcome this handicap, composite materials consisting of an elastomer matrix with ceramic inclusion have been proposed in the last years. The present work aims at an analysis of the compressive deformation of the composite by a numerical comparison of three inclusion geometries. The results show optimization possibilities regarding the shape of the inclusion which allow for larger dielectric elastomer deformations at lower applied electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R.E., Sommer-Larsen, P.: Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier, Amsterdam (2011)

    Google Scholar 

  2. Shian, S., Diebold, R.M., Clarke, D.R.: Tunable lenses using transparent dielectric elastomer actuators. Opt. Express 21(7), 8669–8676 (2013)

    Article  Google Scholar 

  3. Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    Article  MATH  Google Scholar 

  4. Dorfmann, A., Ogden, R.W.: Nonlinear electroelastic deformations. J. Elast. 82, 99–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Klinkel, S., Zwecker, S., Müller, R.: A solid shell finite element formulation for dielectric elastomers. J. Appl. Mech. 80, 2:021026 (2013)

    Article  Google Scholar 

  6. Vu, D.K., Steinmann, P.: A 2-D coupled BEM–FEM simulation of electro-elastostatics at large strain. Comput. Methods Appl. Mech. Eng. 199, 1124–1133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ask, A., Denzer, R., Menzel, A., Ristinmaa, M.: Inverse-motion-based form finding for quasi-incompressible finite electroelasticity. Int. J. Numer. Methods Eng. 94, 554–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, B.X., Müller, R., Klassen, M., Gross, D.: On electromechanical stability analysis of dielectric elastomer actuators. Appl. Phys. Lett. 97, 162908 (2010)

    Article  Google Scholar 

  9. Xu, B.X., Müller, R., Theis, A., Klassen, M., Gross, D.: Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 100, 112903 (2012)

    Article  Google Scholar 

  10. deBotton, G., Tevet-Deree, L., Socolsky, E.A.: Electroactive heterogeneous polymers: analysis and applications to laminated composites. Mech. Adv. Mater. Struct. 14, 13–22 (2007)

    Article  Google Scholar 

  11. Mueller, R., Xu, B.X., Gross, D., Lyschik, M., Schrade, D., Klinkel, S.: Deformable dielectrics—optimization of heterogeneities. Int. J. Eng. Sci. 48, 647–657 (2010)

    Article  Google Scholar 

  12. Klassen, M., Xu, B.X., Klinkel, S., Müller, R.: Material modeling and microstructural optimization of dielectric elastomer actuators. Tech. Mech. 32(1), 38–52 (2012)

    Google Scholar 

  13. Keip, M.A., Steinmann, P., Schröder, J.: Two-scale computational homogenization of electro-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 278, 62–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Keip, M.A., Schröder, J.: Multiscale modeling of electroactive polymer composites. Ferroic Funct. Mater. Exp. Model. Simul. 581, 263–285 (2018)

    Article  Google Scholar 

  15. Holzapfel, G.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    MATH  Google Scholar 

  16. Wriggers, P.: Nichtlineare Finite-Element-Methode. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  17. Griffiths, D.J.: Introduction to Electrodynamics. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  18. Simo, J.C., Taylor, R.L., Pister, K.S.: Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Methods Appl. Mech. Eng. 51, 177–208 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brink, U., Stein, E.: On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput. Mech. 19, 105–119 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Klassen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klassen, M., Klinkel, S. & Müller, R. Shape optimization of material inclusions in dielectric elastomer composites. Arch Appl Mech 89, 1141–1156 (2019). https://doi.org/10.1007/s00419-019-01540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01540-1

Keywords

Navigation