Skip to main content
Log in

General solution for inhomogeneous line inclusion with non-uniform eigenstrain

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The inhomogeneous line inclusion problem has various backgrounds in practical application such as graphene sheet-reinforced composites, and hydrogen embrittlement, grain boundary segregation in metallic materials. Due to the long-standing mathematical difficulty, there is no explicit analytical solution obtained except for the thin ellipsoidal inhomogeneity and rigid line inhomogeneity. In this paper, to find the deformation state due to the presence of such kind of elastic inhomogeneities, the inhomogeneous line inclusion problem is tackled in the framework of plane deformation. Firstly, the fundamental solution for a point-wise residual strain is presented and its deformation strain field is derived. By using Green’s function method, the homogeneous line inclusion problem with non-uniform eigenstrain is formulated and an Eshelby tensor-like line inclusion tensor is derived. From the line inclusion concept, the classical edge dislocation is revisited. Also, by virtue of this model, some elementary line homogenous inclusion problems are explored. Secondly, based on the homogeneous line inclusion solution, the inhomogeneous line inclusion problem is formulated using the equivalent eigenstrain principle, and its general solution is derived. Then, an inhomogeneous edge dislocation model is proposed and its analytical solution is presented. Furthermore, to demonstrate the application of the proposed inhomogeneous line inclusion model, a typical thin inclusion under remote load is studied. This study provides a general solution for inhomogeneous thin inclusion problems. The models and their solutions introduced here will also find application in the mechanics of composites analysis, heterogeneous material modeling, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aguilar, S., Tabares, R., Serna, C.: Microstructural transformations of dissimilar austenite–ferrite stainless steels welded joints. J. Mater. Phys. Chem. 1, 65–68 (2013)

    Google Scholar 

  2. Atkinson, C.: Some ribbon-like inclusion problems. Int. J. Eng. Sci. 11, 243–266 (1973)

    Article  MATH  Google Scholar 

  3. Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 41–64 (2010)

    Article  Google Scholar 

  4. Ballarini, R.: An integral-equation approach for rigid line inhomogeneity problems. Int. J. Fract. 33, R23–R26 (1987)

    Google Scholar 

  5. Ballarini, R.: A rigid line inclusion at a bimaterial interface. Eng. Fract. Mech. 37, 1–5 (1990)

    Article  Google Scholar 

  6. Brussat, T.R., Westmann, R.A.: A Westergaard-type stress function for line inclusion problems. Int. J. Solids Struct. 11, 665–677 (1975)

    Article  MATH  Google Scholar 

  7. Cantwell, P.R., Tang, M., Dillon, S.J., Luo, J., Rohrer, G.S., Harmer, M.P.: Grain boundary complexions. Acta Mater. 62, 1–48 (2014)

    Article  Google Scholar 

  8. Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1979)

    Google Scholar 

  9. Claussen, N., Ruehle, M., Heuer, A. H. (eds.): Advances in ceramics, Vol. 12, p. 352. Science and technology of zirconia II. The American Ceramic Society, Columbus, OH (1984)

  10. Deng, W., Meguid, S.A.: Analysis of conducting rigid inclusion at the interface of two dissimilar piezoelectric materials. J. Appl. Mech. 65, 76–84 (1998)

    Article  Google Scholar 

  11. Du, Y.A., Ismer, L., Rogal, J., Hickel, T., Neugebauer, J., Drautz, R.: First-principles study on the interaction of H interstitials with grain boundaries in \(\alpha \)- and \(\beta \)-Fe. Phys. Rev. B 84, 667–673 (2011)

    Article  Google Scholar 

  12. Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. 56, 550–555 (1989)

    Article  MATH  Google Scholar 

  13. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561–569 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frolov, T., Olmsted, D.L., Asta, M., Mishin, Y.: Structural phase transformations in metallic grain boundaries. Nat. Commun. 4, 1899 (2012)

    Article  Google Scholar 

  16. Gorbatikh, L., Lomov, S.V., Verpoest, I.: Original mechanism of failure initiation revealed through modelling of naturally occurring microstructures. J. Mech. Phys. Solids 58, 735–750 (2010)

    Article  Google Scholar 

  17. Hatano, M., Fujinami, M., Arai, K., Fujii, H., Nagumo, M.: Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies. Acta Mater. 67, 342–353 (2014)

    Article  Google Scholar 

  18. Herbig, M., Kuzmina, M., Haase, C., Marceau, R.K.W., Gutierrez-Urrutia, I., Haley, D., Molodov, D.A., Choi, P., Raabe, D.: Grain boundary segregation in Fe–Mn–C twinning-induced plasticity steels studied by correlative electron backscatter diffraction and atom probe tomography. Acta Mater. 83, 37–47 (2015)

    Article  Google Scholar 

  19. Hickel, T., Nazarov, R., McEniry, E.J., Leyson, G., Grabowski, B., Neugebauer, J.: Ab Initio based understanding of the segregation and diffusion mechanisms of hydrogen in steels. J. Met. 66, 1399–1405 (2014)

    Google Scholar 

  20. Hu, J., Shi, Y.N., Sauvage, X., Sha, G., Lu, K.: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292–1296 (2017)

    Article  Google Scholar 

  21. Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Elsevier, Kidlington (2011)

    Google Scholar 

  22. Hurtado, J.A., Dundurs, J., Mura, T.: Lamellar inhomogeneites in a uniform stress field. J. Mech. Phys. Solids 44, 1–21 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Inst. Naval Archit. Lond. 55, 219–230 (1913)

    Google Scholar 

  24. Ioakimidis, N.I., Theocaris, P.S.: The second fundamental crack problem and the rigid line inclusion problem in plane elasticity. Acta Mech. 34, 51–61 (1979)

    Article  MATH  Google Scholar 

  25. Kaczynski, A., Kozłowski, W.: Thermal stresses in an elastic space with a perfectly rigid flat inclusion under perpendicular heat flow. Int. J. Solids Struct. 46, 1772–1777 (2009)

    Article  MATH  Google Scholar 

  26. Kitahara, H., Ueji, R., Tsuji, N., Minamino, Y.: Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279–1288 (2006)

    Article  Google Scholar 

  27. Koyama, M., Akiyama, E., Tsuzaki, K.: Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros. Sci. 54, 1–4 (2012)

    Article  Google Scholar 

  28. Li, H., Xia, S., Zhou, B., Liu, W.: C–Cr segregation at grain boundary before the carbide nucleation in Alloy 690. Mater. Charact. 66, 68–74 (2012)

    Article  Google Scholar 

  29. Li, Q., Ting, T.C.T.: Line inclusions in anisotropic elastic solids. J. Appl. Mech. 56, 556–563 (1989)

    Article  MATH  Google Scholar 

  30. Liddicoat, P.V., Liao, X.Z., Zhao, Y., Zhu, Y., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nat. Commun. 1, 63 (2010)

    Article  Google Scholar 

  31. Ma, L.F.: Fundamental formulation for transformation toughening. Int. J. Solids Struct. 47, 3214–3220 (2010)

    Article  MATH  Google Scholar 

  32. Ma, L.F., Korsunsky, A.M.: The principle of equivalent eigenstrain for inhomogeneous inclusion problems. Int. J. Solids Struct. 51, 4477–4484 (2014)

    Article  Google Scholar 

  33. Ma, L.F., Wang, B., Korsunsky, A.M.: Plane deformation of circular inhomogeneous inclusion problems with non-uniform symmetrical dilatational eigenstrain. Mater. Des. 86, 809–817 (2015)

    Article  Google Scholar 

  34. Ma, L.F., Wang, B., Korsunsky, A.M.: Complex variable formulation for a rigid line inclusion interacting with a generalized singularity. Arch. Appl. Mech. 88, 613–627 (2018)

    Article  Google Scholar 

  35. Miracle, D.B.: Metal matrix composites—from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)

    Article  Google Scholar 

  36. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Dordrecht (1987)

    Book  MATH  Google Scholar 

  37. Mura, T.: Inclusion problems. Appl. Mech. Rev. 41, 15–20 (1988)

    Article  Google Scholar 

  38. Mura, T., Shodja, H.M., Hirose, Y.: Inclusion problems. Appl. Mech. Rev. 49, S118–S127 (1996)

    Article  Google Scholar 

  39. Muskhelishvili, N.I.: Some Problems of Mathematical Theory of Elasticity (English translation from the third Russian edition). Noordhoff Ltd., Groningen (1953)

  40. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall properties of heterogeneous materials, 2nd edn. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  41. Sakaguchi, N., Watanabe, S., Takahashi, H.: Heterogeneous dislocation formation and solute redistribution near grain boundaries in austenitic stainless steel under electron irradiation. Acta Mater. 49, 1129–1137 (2001)

    Article  Google Scholar 

  42. Shodja, H.M., Ojaghnezhad, F.: A general unified treatment of lamellar inhomogeneities. Eng. Fract. Mech. 74, 1499–1510 (2007)

    Article  Google Scholar 

  43. Song, J., Curtin, W.A.: Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat. Mater. 12, 145–151 (2012)

    Article  Google Scholar 

  44. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  45. Stoller, R.E., Maziasz, P.J., Rowcliffe, A.F., Tanaka, M.P.: Swelling behavior of austenitic stainless steels in a spectrally tailored reactor experiment: implications for near-term fusion machines. J. Nucl. Mater. 155, 1328–1334 (1988)

    Article  Google Scholar 

  46. Tang, M., Carter, W.C., Cannon, R.M.: Diffuse interface model for structural transitions of grain boundaries. Phys. Rev. B 73, 024102 (2006)

    Article  Google Scholar 

  47. Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., Zhang, D.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594–597 (2012)

    Article  Google Scholar 

  48. Wang, Z.Y., Zhang, H.T., Chou, Y.T.: Characteristics of the elastic field of a rigid line inhomogeneity. J. Appl. Mech. 52, 818–822 (1985)

    Article  Google Scholar 

  49. Wu, K.C.: Line inclusions at anisotropic bimaterial interface. Mech. Mater. 10, 173–182 (1990)

    Article  Google Scholar 

  50. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (Grant No.: 41630634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Qiu, Y., Zhang, Y. et al. General solution for inhomogeneous line inclusion with non-uniform eigenstrain. Arch Appl Mech 89, 1723–1741 (2019). https://doi.org/10.1007/s00419-019-01539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-019-01539-8

Keywords

Navigation