Skip to main content
Log in

A Kriging and Stochastic Collocation ensemble for uncertainty quantification in engineering applications

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We propose a new surrogate modeling approach by combining two non-intrusive techniques: Kriging and Stochastic Collocation. The proposed method relies on building a sufficiently accurate Stochastic Collocation model which acts as a basis to construct a Kriging model on the residuals, to combine the accuracy and efficiency of Stochastic Collocation methods in describing stochastic quantities with the flexibility and modeling power of Kriging-based approaches. We investigate and compare performance of the proposed approach with state-of-art techniques over benchmark problems and practical engineering examples on various experimental designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gorissen D, Couckuyt I, Demeester P, Dhaene T, Crombecq K (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. J Mach Learn Res 11:2051–2055

    Google Scholar 

  2. Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Global Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang G, Shan S (2007) Review of metamodeling techniques in support of engineering design optimization. J Mech Design 129(4):370–380

    Article  Google Scholar 

  4. Witteveen J, Doostan A, Chantrasmi T, Pecnik R, Iaccarino G (2009) Comparison of stochastic collocation methods for uncertainty quantification of the transonic rae 2822 airfoil. Vrije Universiteit Brussel, Brussels, Belgium, Workshop on Quantification of CFD Uncertainties

  5. Gorissen D, Couckuyt I, Laermans E, Dhaene T (2010) Multiobjective global surrogate modeling, dealing with the 5-percent problem. Eng Comput 26(1):81–98

    Article  Google Scholar 

  6. Ganapathysubramanian B, Zabaras N (2007) Sparse grid collocation schemes for stochastic natural convection problems. J Comput Phys 225(1):652–685

    Article  MathSciNet  MATH  Google Scholar 

  7. Simpson T, Poplinski J, Koch PN, Allen J (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129–150

    Article  MATH  Google Scholar 

  8. Sacks J, Welch WJ, Mitchell T, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MathSciNet  MATH  Google Scholar 

  9. Dwight R, Han Z (2009) Efficient uncertainty quantification using gradient-enhanced kriging. In: Proceedings of the 11th AIAA non-deterministic approaches conference

  10. Ghanem RG, Spanos PD ((1991)) stochastic finite elements: a spectral approach. Springer, New York, Inc., New York, NY, USA

  11. Eldred MS ((2009)) Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In: Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2009-2274

  12. Agarwal N, Aluru N (2011) Weighted smolyak algorithm for solution of stochastic differential equations on non-uniform probability measures. Int J Numer Methods Eng 85(11):1365–1389

    Article  MathSciNet  MATH  Google Scholar 

  13. Xing Y, Spina D, Li A, Dhaene T, Bogaerts W (2016) Stochastic collocation for device-level variability analysis in integrated photonics. Photon Res 4(2):93–100

    Article  Google Scholar 

  14. Schöbi R, Sudret B, Wiart J (2015) Polynomial-based Kriging. Int J Uncertain Quantif 5(2):171–193

    Article  MathSciNet  Google Scholar 

  15. Clarke SM, Griebsch JH, Simpson TW (2004) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Design 127(6):1077–1087

    Article  Google Scholar 

  16. Han ZH, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling. AIAA J 50(9):1885–1896

    Article  Google Scholar 

  17. Han Z, Zimmerman R, Görtz S (2012) Alternative cokriging method for variable-fidelity surrogate modeling. AIAA J 50(5):1205–1210

    Article  Google Scholar 

  18. Wan X, Karniadakis GE (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J Comput Phys 209(2):617–642

    Article  MathSciNet  MATH  Google Scholar 

  19. Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28(3):901–928

    Article  MathSciNet  MATH  Google Scholar 

  20. Witteveen JAS, Iaccarino G (2012) Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J Sci Comput 34(2):A814–A838

    Article  MathSciNet  MATH  Google Scholar 

  21. Witteveen JAS, Iaccarino G (2012) Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM J Sci Comput 34(3):A1522–A1543

    Article  MathSciNet  MATH  Google Scholar 

  22. Matre OL, Najm H, Ghanem R, Knio O (2004) Multi-resolution analysis of wiener-type uncertainty propagation schemes. J Comput Phys 197(2):502–531

    Article  MathSciNet  MATH  Google Scholar 

  23. Matre OPL, Najm HN, Pbay PP, Ghanem RG, Knio OM (2007) Multi\(-\)resolution\(-\)analysis scheme for uncertainty quantification in chemical systems. SIAM J Sci Comput 29(2):864–889

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang J, Faverjon B, Peters H, Kessissoglou N (2015) Application of polynomial chaos expansion and model order reduction for dynamic analysis of structures with uncertainties. Procedia IUTAM 13:63–70 (dynamical Analysis of Multibody Systems with Design Uncertainties)

    Article  Google Scholar 

  25. Spina D, Ferranti F, Antonini G, Dhaene T, Knockaert L (2014) Efficient variability analysis of electromagnetic systems via polynomial chaos and model order reduction. IEEE Trans Compon Packag Manuf Technol 4(6):1038–1051

    Article  Google Scholar 

  26. Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys 230(6):2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  27. Peng J, Hampton J, Doostan A (2014) A weighted \({\ell }_{1}\)-minimization approach for sparse polynomial chaos expansions. J Comput Phys 267:92–111

    Article  MathSciNet  MATH  Google Scholar 

  28. Preston JS, Tasdizen T, Terry CM, Cheung AK, Kirby RM (2008) Using the stochastic collocation method for the uncertainty quantification of drug concentration due to depot shape variability. IEEE Trans Bio-Med Eng 56(3):609–620

    Article  Google Scholar 

  29. Barthelmann V, Novak E, Ritter Klaus (2000) High dimensional polynomial interpolation on sparse grids. Adv Comput Math 12(4):273–288

    Article  MathSciNet  MATH  Google Scholar 

  30. Gerstner T, Griebel M (2003) Dimension-adaptive tensor-product quadrature. Computing 71(1):65–87

    Article  MathSciNet  MATH  Google Scholar 

  31. Klimke A (2006) Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD thesis, University Stuttgart, Shaker verleg, Aachen

  32. Ma X, Zabaras N (2009) An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J Comput Phys 8:3084–3113

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma X, Zabaras N (2010) An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J Comput Phys 229(10):3884–3915

    Article  MathSciNet  MATH  Google Scholar 

  34. Bungartz HJ, Griebel M (2004) Sparse grids. Acta Numerica 13:147–269

    Article  MathSciNet  MATH  Google Scholar 

  35. Griebel M (1998) Adaptive sparse grid multilevel methods for elliptic pdes based on finite differences. Computing 61(2):151–179

    Article  MathSciNet  MATH  Google Scholar 

  36. Bilionis I, Zabaras N (2012) Multi-output local gaussian process regression: applications to uncertainty quantification. J Comput Phys 231(17):5718–5746

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiu D (2009) Fast numerical methods for stochastic computations: a review. Commun Comput Phys 5(2–4):242–272

    MathSciNet  MATH  Google Scholar 

  38. Marrel A, Iooss B, Dorpe FV, Volkova E (2008) An efficient methodology for modeling complex computer codes with gaussian processes. Comput Stat Data Anal 52(10):4731–4744

    Article  MathSciNet  MATH  Google Scholar 

  39. Kleijnen JP (2009) Kriging metamodeling in simulation: A review. Eur J Oper Res 192(3):707–716

    Article  MathSciNet  MATH  Google Scholar 

  40. Sudjianto A, Chen W, Jin R (2002) On sequential sampling for global metamodeling in engineering design

  41. Sasena MJ, Papalambros P, Goovaerts P (2002) Exploration of metamodeling sampling criteria for constrained global optimization. Eng Optim 34:263–278

    Article  Google Scholar 

  42. Zhu Z, Zhang H (2006) Spatial sampling design under the infill asymptotic framework. Environmetrics 17(4):323–337

    Article  MathSciNet  Google Scholar 

  43. Stein ML (1999) Interpolation of the spatial data. Springer, New York

    Book  Google Scholar 

  44. Couckuyt I, Dhaene T, Demeester P (2014) oodace toolbox: a flexible object-oriented kriging implementation. J Mach Learn Res 15(1):3183–3186

    MATH  Google Scholar 

  45. Couckuyt I, Forrester A, Gorissen D, Turck FD, Dhaene T (2012) Blind kriging: implementation and performance analysis. Adv Eng Softw 49:1–13

    Article  Google Scholar 

  46. Marelli S, Sudret B (2014) UQLab: A Framework for Uncertainty Quantification in MATLAB. ETH-Zürich

  47. Ackley DH (1987) A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Norwell

    Book  Google Scholar 

  48. Bäck T ((1996)) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, USA

  49. Sobol I (2003) Theorems and examples on high dimensional model representation. Reliab Eng Syst Saf 79(2):187–193

    Article  MathSciNet  Google Scholar 

  50. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979 (bayesian Networks in Dependability)

    Article  Google Scholar 

  51. Molga M, Smutnicki C (2005) Test functions for optimization needs. http://new.zsd.iiar.pwr.wroc.pl/files/docs/functions.pdf

  52. Lee SH, Kwak BM (2006) Response surface augmented moment method for efficient reliability analysis. Struct Saf 28(3):261–272

    Article  Google Scholar 

  53. Loeve M (1977) Probability theory, 4th edn. Springer, New York

    MATH  Google Scholar 

  54. Novak E, Ritter K (1999) Simple cubature formulas with high polynomial exactness. Constr Approx 15(4):499–522

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaintura.

Appendix: Smolyak algorithm

Appendix: Smolyak algorithm

The sparse interpolant \(\mathbf {A}_{L,d}\) given by the Smolyak algorithm is [54]

$$\begin{aligned} \mathbf {A}_{L,d}\left( \mathbf {\varvec{\xi }}\right) = \sum _{L-d+1\le |\mathbf {k}|\le L} \left( -1\right) ^{L-|\mathbf {k}|} \left( \begin{array}{c} {d-1}\\ {L-|\mathbf {k}|} \end{array}\right) \left( U^{k_{1}} \otimes \cdots \otimes U^{k_{d}}\right) \end{aligned}$$
(17)

where \(A_{L,d}\) is the weighted sum of d dimensional product rule, the vector \(\mathbf {k}\) is formed by the interpolation level or order used for each variable, here \(|\mathbf {k}| = k_{1} + \cdots + k_{d}\), and L is the maximum level assumed for the sparse grid. In the above expression, the desired interpolant \(A_{L,d}\) is formed by combination of the one-dimensional rules \(U^{k_{i}}\) of order \(k_i\) which sum or total order \(|\mathbf {k}|\) never exceeds the maximum level L.

Fig. 10
figure 10

Two-dimensional tensor product based on 17 samples for each variable and corresponding Smolyak sparse grid \(\mathbf {H}_{4,2}\) based on the Clenshaw Curtis rule

To form an interpolant \(\mathbf {A}_{L,d}\) in Eq. (17), the total number of points ( \(\mathbf {H}_{L,d}\)) used by the interpolant is given by the following:

$$\begin{aligned} \mathbf {H}_{L,d} = \bigcup _{{L-d+1\le |\mathbf {k}|\le L}} \Theta _{1}^{k_{1}} \times \cdots \times \Theta _{d}^{k_d} \end{aligned}$$
(18)

where \(\Theta\) denotes the set of points used in the one-dimensional function interpolation. Moreover, by choosing a suitable one-dimensional node scheme, e.g., Chebchev points, the set of collocation points \(\Theta ^{k}\) obtained are nested.

To illustrate the grid construction based on the tensor product and sparse grid, a two-dimensional example is used here. In particular, the Clenshaw–Curtis rule is adopted to choose the node for the interpolation in each dimension: the resulting collocation point is the extrema of the Chebyshev polynomials. The total number of points \((\mathbf {H}_{4,2})\) using a level 4 sparse grid is obtained by Eq. (18). As result, a maximum of 17 nodes are chosen for each dimension and a total of 65 collocation points (Fig. 10b) are required to build the desired SC model. The corresponding tensor product grid is obtained by the product of the 17 nodes chosen in each dimension by the Clenshaw–Curtis rule. As a result, 289 \((17 \times 17)\) points (Fig. 10a) are required to build the desired SC model by a tensor product, which is approximately 4.5 times the total number of points required by the corresponding sparse grid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaintura, A., Spina, D., Couckuyt, I. et al. A Kriging and Stochastic Collocation ensemble for uncertainty quantification in engineering applications. Engineering with Computers 33, 935–949 (2017). https://doi.org/10.1007/s00366-017-0507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0507-0

Keywords

Navigation