Skip to main content

Advertisement

Log in

Effects of Irrigation Regime and Foliar Application of Salicylic Acid and Spermine on the Contents of Essential Oil and Caffeic Acid Derivatives in Echinacea purpurea L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

This study investigated the effect of irrigation regimes and the foliar application of salicylic acid (SA) and spermine (SPM) on the content of essential oil (EO) and caffeic acid derivatives (cichoric acid, echinacoside, chlorogenic acid, caftaric acid, and cynarin) of purple coneflower. Water deficit increased the EO content in leaves and flowers. However, the content of caffeic acid derivatives in leaves, flowers, and roots were increased in some cases while in other cases they were decreased under water stress, depending on water level, caffeic acid compound, and the plant organ. SA and SPM application decreased the EO content in leaves and flowers under all irrigation regimes. Nonetheless, the application of SA and SPM increased the contents of caffeic acid derivatives in all plant organs and the highest changes were obtained by combined SA and SPM. The effects of SA were concentration-dependent. In short, the positive effects of SA on caffeic acid derivatives were greater compared to SPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech J Genet Plant Breed 46:27–34

    Article  CAS  Google Scholar 

  • Aftab T, Masroor M, Khan A, Jaime A, Da Silva T, Idrees M, Neem Moinuddin M (2011) Role of salicylic acid in promoting salt stress tolerance and enhanced artemisinin production in Artemisia annua L. J Plant Growth Regul 30:425–435

    CAS  Google Scholar 

  • Ali MB, Hahn EJ, Pea KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules 12:621–627

    Google Scholar 

  • Aliabadi FH, Valadabadi SAR, Daneshian J, Khalvati MA (2009) Evaluation changing of essential oil of balm (Melissa officinalis L.) under water deficit stress conditions. J Med Plant Res 3:329–333

    Google Scholar 

  • Alinian S, Razmjoo J, Zeinali H (2016) Flavonoids, anthocynins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind Crops Prod 81:49–55

    CAS  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. FAO irrigation and drainage paper, No. 56. FAO, Rome

  • Baher ZF, Mirza M, Ghorbanli M, Rezaii MB (2002) The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour Fragr J 17:275–277

    CAS  Google Scholar 

  • Bahreininejad B, Razmjoo J, Mirza M (2013) Influence of water stress on morpho-physiological and phytochemical traits in Thymus daenensis. Int J Plant Prod 7:152–166

    Google Scholar 

  • Barrett B (2003) Medicinal properties of Echinacea: a critical review. Phytomedicine 10:66–86

    CAS  PubMed  Google Scholar 

  • Bauer R (1998) Echinacea: biological effects and active principles, vol 691. ACS, Washington, DC, pp 140–157

    Google Scholar 

  • Becker C, Klaring H, Kroh LW, Krumbein A (2013) Temporary reduction of radiation does not permanently reduce flavonoid glycosides and phenolic acids in red lettuce. Plant Physiol Biochem 72:154–160

    CAS  PubMed  Google Scholar 

  • Bettaieb I, Zakhama N, Aidi Wannes W, Kchouk ME, Marzouk B (2009) Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci Hortic 120:271–275

    CAS  Google Scholar 

  • Biondi S, Lenzi C, Baraldi R, Bagni N (1997) Hormonal effects on growth and morphology of normal and hairy roots of Hyoscyamus muticus. J Plant Growth Regul 16:159–167

    CAS  Google Scholar 

  • Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG, Hashemi M (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J 5:407–415

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    CAS  Google Scholar 

  • Ceeh R (2002) Phytochemical variation within populations of Echinacea angustifolia (Asteraceae). Biochem Syst Ecol 30:837–854

    Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    CAS  PubMed  Google Scholar 

  • Chen WH, Xu CM, Zeng JL, Zhao B, Wang XD, Wang YC (2007) Improvement of echinacoside and acteoside production by two-stage elicitation in cell suspension culture of Cistanche deserticola. World J Microbiol Biotechnol 23:1451–1458

    CAS  Google Scholar 

  • Chen CL, Zhang SC, Sung JM (2008) Biomass and caffeoyl phenols production of Echinacea purpurea grown in Taiwan. Exp Agric 44:497–507

    CAS  Google Scholar 

  • Clevenger JH (1928) Apparatus for the determination of volatile oil. J Am Pharm Assoc 17:345–349

    Google Scholar 

  • Coban O, Baydar NG (2017) Brassinosteroid modifies growth and essential oil production in peppermint (Mentha piperita L.). J Plant Growth Regul 36:43–49

    CAS  Google Scholar 

  • Dalby-Brown L, Barsett H, Landbo AR, Meyer AS, Molgaard P (2005) Synergistic antioxidative effects of alkamides, caffeic acid derivatives, and polysaccharide fractions from Echinacea purpurea on in vitro oxidation of human low-density lipoproteins. J Agric Food Chem 53:9413–9423

    CAS  PubMed  Google Scholar 

  • De Abreu IN, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248

    Google Scholar 

  • Del Moral R (1972) On the variability of chlorogenic acid concentration. Oecologia 9:289–300

    PubMed  Google Scholar 

  • Denaxa N-K, Roussos PA, Vemmos SN (2014) The possible role polyamines to the recalcitrance of “Kalamata” olive leafy cuttings to root. J Plant Growth Regul 33:579–589

    CAS  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid induced phenolic compounds and raised activities of secondary metabolic and antioxidant enzymes in Salvia miltorrhizacell culture. J Biotechnol 148:99–104

    CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2007) Biology of floral scent. CRC press, Boca Raton

    Google Scholar 

  • Dunford NT, Vazquez RS (2005) Effect of water stress on plant growth and thymol and carvacrol concentrations in Mexican oregano grown under controlled conditions. J Appl Hortic 7:20–22

    Google Scholar 

  • Fatma F, Kamal A, Srivastava A (2018) Exognous application of salicylic acid mitigates the toxic effect of pesticides in Vigna radiata (L.) Wilczek. J Plant Growth Regul 1–10

  • Fraternale D, Giamperi L, Ricci D, Rocchi MBL, Guidi L, Epifano F, Marcotullio FC (2003) The effect of triacontanol on micropropagation and on secretory system of Thymus mastichina. Plant Cell Tissue Organ Cult 74:87–97

    CAS  Google Scholar 

  • Garcia SM, Rotondo R, Lopez Anido FS, Cointry EL, SantaCruz P, Furlan R, Escalante AM (2016) Influence of irrigation on the chemical compounds in leaves in vegetative and reproductive stage and bracts of globe artichoke (Cynara cardunculus var. scolymus L). Acta Hortic 1:95–102

    Google Scholar 

  • Gershenzon J, Lincoln D, Langenheim J (1978) The effect moisture stress monoterpenoid yield and composition in Satureja douglasii. Biochem Syst Ecol 6:33–43

    CAS  Google Scholar 

  • Gray DE, Pallardy SG, Garrett HE, Rottinghaus GE (2003) Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots. Planta Med 69:50–55

    CAS  PubMed  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    CAS  Google Scholar 

  • Hosseini SS, Mashayekhi K, Alizadeh M, Ebrahimi P (2011) Effect of salicylic acid on somatic embryogenesis and chlorogenic acid levels of carrot (Daucus carota cv. Nantes) explants. J Orna Hortic Plant 1:105–113

    Google Scholar 

  • Idrees M, Khan MMA, Aftab T, Naeem M, Hashmi N (2010) Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J Plant Interact 5:293–303

    CAS  Google Scholar 

  • Iranshahi M, Amanzadeh Y (2008) Rapid isocratic HPLC analysis of caffeic acid derivatives from Echinacea purpurea cultivated in Iran. Chem Nat Compd 44:190–193

    CAS  Google Scholar 

  • Jaafar HZ, Ibrahim MH, Karimi E (2012) Phenolics and flavonoids compounds, phenylanine ammonia lyase and antioxidant activity responses to elevated CO2 in Labisia pumila (Myrisinaceae). Molecules 17:6331–6347

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jeshni MG, Mousavinik M, Khammari I, Rahimi M (2015) The changes of yield and essential oil components of German Chamomile (Matricaria recutita L.) under application of phosphorus and zinc fertilizers and drought stress conditions. J Saudi Soc Agric Sci 16:60–65

    Google Scholar 

  • Kasai H, Fukuda S, Yamaizumi Z, Sugie S, Mori H (2000) Action of chlorogenic acid in vegetables and fruits as an inhibitor of 8-hydroxydeoxyguanosine formation in vitro and in a rat carcinogenesis model. Food Chem Toxicol 38:467–471

    CAS  PubMed  Google Scholar 

  • Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol Plant 121:182–186

    CAS  PubMed  Google Scholar 

  • Kovacik J, Gruz J, Backor M, Strnad M, Repcak M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    CAS  PubMed  Google Scholar 

  • Kuzel S, Vydra J, Triska J, Virchotova N, Hruby M, Cigler P (2009) Elicitation of pharmacologically active substances in an intact medical plant. J Agric Food Chem 57:7907–7911

    CAS  PubMed  Google Scholar 

  • Letchamo W, Livesey J, Arnason TJ, Bergeron C, Krutilina VS (1999) Cichoric acid and isobutylamide content in Echinacea purpurea as influenced by flower developmental stages. In: Janick J (ed) Perspectives on new crops and new uses, vol 1. ASHS Press, Alexandria, pp 494–498

    Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007a) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    CAS  Google Scholar 

  • Liu Y, Zeng J, Chen B, Yao S (2007b) Investigation of phenolic constituents in Echinacea purpurea grown in China. Planta Med 73:1600–1605

    CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Lianga Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33:84–88

    CAS  Google Scholar 

  • Luo W, Ang CYW, Gehring TA, Heinze TM, Lin LJ, Mattia A (2003) Determination of phenolic compounds in dietary supplements and tea blends containing Echinacea by liquid chromatography with coulometric electrochemical detection. J AOAC Int 86:202–208

    CAS  PubMed  Google Scholar 

  • Mahouachi J, Argamasilla R, Gómez-Cadenas A (2012) Influence of exogenous glycine betaine and abscisic acid on papaya in responses to water-deficit stress. J Plant Growth Regul 31:1–10

    CAS  Google Scholar 

  • Malarz J, Stojakowska A, Kisiel W (2007) Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol Plant 29:127–132

    CAS  Google Scholar 

  • Manukyan A (2011) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: I. Drought stress. Med Aromat Plant Sci Biotechnol 5:119–125

    Google Scholar 

  • Mohamed MAH, Abdu M (2004) Growth and oil production of fennel (Foeniculum vulgare Mill): effect of irrigation and organic fertilization. Biol Agric Hortic 22:31–39

    Google Scholar 

  • Montanari M, Degl Innocenti E, Maggini R, Pacifici S, Pardossi A, Guidi L (2008) Effect of nitrate fertilization and saline stress on the contents of active constituents of Echinacea angustifolia DC. Food Chem 107:1461–1466

    CAS  Google Scholar 

  • Mqlgaard P, Johnsen S, Christensen P, Cornett C (2003) HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products. J Agric Food Chem 51:6922–6933

    Google Scholar 

  • Mustafavi SH, Shekari F, Hatami Maleki H (2016) Influence of exogenous polyamines on antioxidant defence and essential oil production in valerian (Valeriana officinalis L.) plants under drought stress. Acta Agric Slov 107:81–91

    Google Scholar 

  • Nair VD, Panneerselvam R, Gopi R, Hong-bo S (2013) Elicitation of pharmacologically active phenolic compounds from Rauvolfia serpentine Benth. Ex. Kurtz. Ind Crops Prod 45:406–415

    CAS  Google Scholar 

  • Nemeth M, Janda T, Hovarth E, Paldi E, Szali G (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci 162:569–574

    CAS  Google Scholar 

  • Nishimura H, Satoh A (2006) Antimicrobial and nematicidal substances from the root of chicory (Cichorium intybus). Allelochem: Biol Control Plant Pathog Dis 2:177–180

    Google Scholar 

  • Nogues S, Allen DJ, Morison JIL, Baker NR (1998) Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiol 117:173–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak M, Manderscheid R, Weigel HJ, Kleinwachter M, Selmar D (2010) Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual 83:133–136

    CAS  Google Scholar 

  • Oh MM, Carey EE, Rajashekar CB (2009) Environmental stresses induce health promoting phytochemicals in lettuce. Plant Physiol Biochem 47:578–583

    CAS  PubMed  Google Scholar 

  • Patel T, Crouch A, Dowless K, Freier D (2008) Acute effects of oral administration of a glycerol extract of Echinacea purpurea on peritoneal exudate cells in female swiss mice. Brain Behav Immun 22:39–40

    Google Scholar 

  • Pellati F, Benvenuti S, Melegari M, Lasseigne T (2005) Variability in the composition of antioxidant compounds in Echinacea species by HPLC. Phytochem Anal 16:77–85

    CAS  PubMed  Google Scholar 

  • Pellati F, Epifano F, Contaldo N, Orlandini G, Cavicchi L, Genovese S (2011) Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea. J Agric Food Chem 59:10425–10434

    CAS  PubMed  Google Scholar 

  • Petropoulos SA, Daferera D, Akoumianakis CA, Passam HC, Polissiou MG (2004) The effect of sowing date and growth stage on the essential oil composition of three types of parsley (Petroselinum crispum). J Sci Food Agric 84:1606–1610

    CAS  Google Scholar 

  • Petropoulos SA, Daferera D, Polissiou MG, Passam HC (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic 115:393–397

    CAS  Google Scholar 

  • Pirbalouti AG, Samani MR, Hashemi M, Zeinali H (2014) Salicylic acid affects growth, essential oil and chemical compositions of thyme (Thymus daenensis Celak.) under reduced irrigation. Plant Growth Regul 72:289–301

    Google Scholar 

  • Rahimi AR, Rokhzadi A, Amini S, Karami E (2013) Effect of salicylic acid an methyl jasmonate on growth and secondary metabolites in Cuminum cyminum L. J Biol Environ Sci 3:140–149

    Google Scholar 

  • Rajashekar CB, Oh M, Carey EE (2012) Organic crop management enhances chicoric acid content in lettuce. Food Nutr Sci 3:1296–1302

    CAS  Google Scholar 

  • Rao MV, Davis RD (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    CAS  PubMed  Google Scholar 

  • Rowshan V, Bahmanzadegan A (2013) Effects of salicylic acid on essential oil components in Yarrow (Achillea millefolium Boiss). Int J Basic Sci Appl Res 2:347–351

    Google Scholar 

  • Sabra A, Adam L, Daayf F, Renault S (2012) Salinity-induced changes in caffeic acid derivatives, alkamides and ketones in three Echinacea species. Environ Exp Bot 77:234–241

    CAS  Google Scholar 

  • Sadeghi M, Dehghan S, Fischer R, Wenzel U, Vilcinskas A, Kavousi HR, Rahnamaeian M (2013) Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius. Plant Signal Behav 8:27335

    Google Scholar 

  • Saltveit M, Choi YJ (2007) Aromatic and dicarboxylates inhibit wound-induced phenolic accumulation in excised lettuce (Lactuca sativa L.) leaf tissue. Post-Harvest Biol Technol 46:222–229

    CAS  Google Scholar 

  • Samadi S, Ghasemnezhad A, Alizadeh M, Alami M (2016) Influence of elicitors on photosynthesis pigments, caffeic acid, chlorogenic acid and proline content of Cynara scolymus callus. Iran J Hortic Sci 47:435–443

    Google Scholar 

  • Schlernitzauer A, Oiry C, Hamad R, Galas S, Cortade F, Chabi B, Casas F, Pessemesse L, Fouret G, Feillet-Coudray C, Cros G, Cabello G, Magous R, Wrutniak-Cabello C (2013) Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS ONE 8:78788

    Google Scholar 

  • Selmar D, Kleinwachter M (2013) Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol 54:817–826

    CAS  PubMed  Google Scholar 

  • Shibata H, Sakamoto Y, Oka M, Kono Y (1999) Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci Biotechnol Biochem 63:1295–1297

    CAS  PubMed  Google Scholar 

  • Shirley BW (2001) Flavonoid biosynthesis: a control model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Google Scholar 

  • Simon JE, Reiss-Bubenheim D, Joly RJ, Charles DJ (1992) Water stress-induced alterations in essential oil content and composition of sweet basil. J Essent Oil Res 4:71–75

    CAS  Google Scholar 

  • Speroni E, Govoni P, Guizzardi S, Renzulli C, Guerra MC (2002) Anti-inflammatory and cicatrizing activity of Ehinacea pallida Nutt. root extract. J Ethnopharmacol 79:265–272

    CAS  PubMed  Google Scholar 

  • Stoll A, Renz J, Brack A (1950) Isolierung und konstitution des echinacosids, eines glykosids aus den wurzeln von Echinacea angustifolia D. C. 6. mitteilung über antibakterielle stoffe. Helv Chim Acta 33:1877–1893

    CAS  Google Scholar 

  • Stuart DL, Wills RBH (2003) Effect of drying temperature on alkamides and cichoric acid concentrations of Echinacea purpurea. J Agric Food Chem 51:1608–1610

    CAS  PubMed  Google Scholar 

  • Thomsen MO (2012) The impact of cultivation techniques and induced stress on bioactive compounds in Echinacea species. Ph.D. Thesis. Department of Food Science and Technology, Aarhus University

  • Travaglia C, Reinoso H, Cohen A, Luna C, Tommasino E, Castillo C, Bottini R (2010) Exogenous ABA increases yield in field-grown Wheat with moderate water restriction. J Plant Growth Regul 29:366–374

    CAS  Google Scholar 

  • Whitbred JM, Schuler MA (2000) Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol 124:47–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LS, Xue XF, Fu CX, Jin ZP, Chen YQ, Zhao DX (2005) Effects of methyl jasmonate and salicylic acid on phenylethanoid glycosides synthesis in suspension cultures of Cistanche deserticola. Sheng wu gong cheng xue bao 21:402–406

    CAS  PubMed  Google Scholar 

  • Yousefzadi M, Sharifi M, Moyano E, Palazon J (2010) Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnol Lett 32:1739–1743

    CAS  PubMed  Google Scholar 

  • Yu D, Yuan Y, Jiang L, Tai Y, Yang X, Hu F, Xie Z (2013) Anti-inflammatory effects of essential oil in Echinacea purpurea L. Pak J Pharm Sci 26:403–408

    PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to Dr. Masoud Mashhadi Akbar Boojar (Associate professor of biochemistry, Kharazmi University) for providing us standard chemicals. This study was supported by the Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Zahedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvizheh, H., Zahedi, M., Abaszadeh, B. et al. Effects of Irrigation Regime and Foliar Application of Salicylic Acid and Spermine on the Contents of Essential Oil and Caffeic Acid Derivatives in Echinacea purpurea L.. J Plant Growth Regul 37, 1267–1285 (2018). https://doi.org/10.1007/s00344-018-9874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9874-z

Keywords

Navigation