Skip to main content
Log in

High-power all-fiber ultra-low noise laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches − 160 dBc/Hz between 3 and 20 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. http://www.nobelprize.org/nobel_prizes/physics/laureates/2017/

  2. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017)

    Article  ADS  Google Scholar 

  4. T.A. Savard, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 56, R1095 (1997)

    Article  ADS  Google Scholar 

  5. A. Omran, M. Boll, T.A. Hilker, K. Kleinlein, G. Salomon, I. Bloch, C. Gross, Phys. Rev. Lett. 115, 263001 (2015)

    Article  ADS  Google Scholar 

  6. R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, S. Bize, New J. Phys. 18, 113002 (2016)

    Article  ADS  Google Scholar 

  7. P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R.L. Savage, F. Seifert, P. Wessels, L. Winkelmann, B. Willke, Opt. Express 20, 10617–10634 (2012)

    Article  ADS  Google Scholar 

  8. C. Basu, P. Weßels, J. Neumann, D. Kracht, Opt. Lett. 37, 2862–2864 (2012)

    Article  ADS  Google Scholar 

  9. K. Takeno, T. Ozeki, S. Moriwaki, N. Mio, Opt. Lett. 30, 2110–2112 (2005)

    Article  ADS  Google Scholar 

  10. C.L. Mueller, M.A. Arain, G. Ciani, R.T. DeRosa, A. Effler, D. Feldbaum, V.V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E.J. King, K. Kokeyama, W.Z. Korth, R.M. Martin, A. Mullavey, J. Peold, V. Quetschke, D.H. Reitze, D.B. Tanner, C. Vorvick, L.F. Williams, G. Mueller, Rev. Sci. Instrum. 87, 014502 (2016)

    Article  ADS  Google Scholar 

  11. C. Robin, I. Dajani, B. Pulford, Opt. Lett. 39, 666–669 (2014)

    Article  ADS  Google Scholar 

  12. M. Karow, C. Basu, D. Kracht, J. Neumann, P. Wessels, Opt. Express 20, 5319–5324 (2012)

    Article  ADS  Google Scholar 

  13. A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, Opt. Lett. 28, 1537–1539 (2003)

    Article  ADS  Google Scholar 

  14. L. Zhang, S. Cui, C. Liu, J. Zhou, Y. Feng, Opt. Express 21, 5456–5462 (2013)

    Article  ADS  Google Scholar 

  15. T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, D. Kracht, Opt. Lett. 41, 9–12 (2016)

    Article  ADS  Google Scholar 

  16. L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, P. Zhou, Opt. Lett. 42, 1–4 (2017)

    Article  ADS  Google Scholar 

  17. J. Boullet, G. Guiraud, G. Santarelli, C. Vincont, S. Salort, C. Pierre, Multi-100W class, fully integrated, monolithic ytterbium-doped photonic-crystal fiber amplifier module. Proc. SPIE. 9730, 97300Q (2016). https://doi.org/10.1117/12.2209496

    Article  ADS  Google Scholar 

  18. http://www.azurlight-systems.com/

  19. G. Guiraud, N. Traynor, G. Santarelli, High-power and low-intensity noise laser at 1064 nm. Opt. Lett. 41, 4040–4043 (2016)

    Article  ADS  Google Scholar 

  20. H.J. Otto, N. Modsching, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Express 23, 15265–15277 (2015)

    Article  ADS  Google Scholar 

  21. B. Ward, Opt. Express 24, 3488–3501 (2016)

    Article  ADS  Google Scholar 

  22. Virgo Collaboration, Technical Report VIR-0128A-12 (2012)

  23. S. Ricciardi, P. Mosca, L. Maddaloni, M. Santamaria, P. De Rosa, De Natale, Opt. Express 21, 14618–14626 (2013)

    Article  ADS  Google Scholar 

  24. M. Tröbs, S. Barke, T. Theeg, D. Kracht, G. Heinzel, K. Danzmann, Opt. Lett. 35, 435–437 (2010)

    Article  ADS  Google Scholar 

  25. N. Chiodo, K. Djerroud, O. Acef, A. Clairon, P. Wolf, Appl. Opt. 52, 7342–7351 (2013)

    Article  ADS  Google Scholar 

  26. G. Zhao, F. Guiraud, B. Floissat, S. Gouhier, N. Rota-Rodrigo, G. Traynor, Santarelli, Opt. Express 25, 357–366 (2017)

    Article  ADS  Google Scholar 

  27. H. Tünnermann, J. Neumann, D. Kracht, P. Weßels, Opt. Express 20, 13539–13550 (2012)

    Article  ADS  Google Scholar 

  28. S. Rota-Rodrigo, B. Gouhier, M. Laroche, J. Zhao, B. Canuel, A. Bertoldi, P. Bouyer, N. Traynor, B. Cadier, T. Robin, G. Santarelli, Opt. Lett. 42, 4557–4560 (2017)

    Article  ADS  Google Scholar 

  29. B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Punken, R. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Weßels, L. Winkelmann, Class. Quantum Grav. 25, 114040 (2008)

    Article  ADS  Google Scholar 

  30. P. Junker, B. Oppermann, Willke, Opt. Lett. 42, 755–758 (2017)

    Article  ADS  Google Scholar 

  31. J. Rollins, D. Ottaway, M. Zucker, R. Weiss, R. Abbott, Opt. Lett. 29, 1876–1878 (2004)

    Article  ADS  Google Scholar 

  32. N. Mio, T. Ozeki, K. Machida, S. Moriwaki, Jpn. J. Appl. Phys. 46, 5338–5341 (2007)

    Article  ADS  Google Scholar 

  33. R.S. Abbott, P.J. King, Rev. Sci. Instrum. 72, 1346–1349 (2001)

    Article  ADS  Google Scholar 

  34. L.Wei, Ph.D. dissertation (2015), https://tel.archives-ouvertes.fr/tel-01284969

  35. F. Wei, C.N. Cleva, Man, Opt. Lett. 41, 5817–5820 (2016)

    Article  ADS  Google Scholar 

  36. J. Aasi et al., LIGO Collaboration, Class. Quantum Grav. 32, 074001 (2015)

    Article  ADS  Google Scholar 

  37. F. Acernese et al., Virgo Collaboration, Class. Quantum Grav. 32, 024001 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported Agence Nationale de la Recherche (ANR) (ANR14 LAB05 0002 01) and Conseil Régional d’Aquitaine (2014-IR60309-00003281); the author J. Zhao acknowledges Post-doctoral scholarship Grant from La Fondation Franco-Chinoise pour la Science et ses Applications (FFCSA); European Gravitational Observatory (EGO). We thank Dr. Benoit Gouhier and Dr. Sergio Rota-Rodrigo for their comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Santarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Guiraud, G., Pierre, C. et al. High-power all-fiber ultra-low noise laser. Appl. Phys. B 124, 114 (2018). https://doi.org/10.1007/s00340-018-6989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6989-7

Navigation