Skip to main content
Log in

Tailoring structural, surface, optical, and dielectric properties of CuO nanosheets for applications in high-frequency devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, a simple chemical method for the preparation of CuO nanostructures by varying Mn-doping concentration has been reported. It also provides an extensive investigation of structural, surface, and optical and dielectric properties of Mn-doped CuO nanostructures. Single-phase monoclinic crystal structure of CuO formation for all samples with average crystallite size of 20–24 nm has been observed from X-ray diffraction (XRD) results. A morphological transformation from nanosheets to spherical nanoparticles have been found with Mn doping as depicted by scanning electron microscopy (SEM) images. The successful doping of Mn ions into CuO crystal has also been supported by Fourier transform infrared spectroscopy (FTIR) results. The widening of the optical bandgap of CuO nanostructures has been observed with increasing Mn doping which may be attributed to band-filling effects and exchange interactions. Interestingly, the values of dielectric constant of CuO nanostructures have been observed to increase systematically with Mn doping making it potential material for high-frequency device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Anandan, S. Yang, Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies-an overview. J. Exp. Nanosci. 2, 23–56 (2007)

    Article  Google Scholar 

  2. M.K. Song, S. Park, F.M. Alamgir, J. Cho, M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011)

    Article  Google Scholar 

  3. K. Han, M. Tao, Electrochemically deposited p–n homojunction cuprous oxide solar cells. Sol Energy Mater. Sol Cells 93, 153–157 (2009)

    Article  Google Scholar 

  4. S. Steinhauer, E. Brunet, T. Maier, G. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Gas sensing properties of novel CuO nanowire devices. Sens. Actuators B Chem. 187, 50–57 (2013)

    Article  Google Scholar 

  5. Y. Tokura, H. Takagi, S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers. Nature 337, 345–347 (1989)

    Article  ADS  Google Scholar 

  6. G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590 (2009)

    Article  Google Scholar 

  7. C.H. Han, Z.Y. Li, J.Y. Shen, Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2–Cu2O under visible irradiation. J. Hazard. Mater. 168, 15–219 (2009)

    Article  Google Scholar 

  8. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo–catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015)

    Article  Google Scholar 

  9. B. Yan, Y. Wang, T. Jiang, X. Wu, Synthesis and enhanced photocatalytic property of La-doped CuO nanostructures by electrodeposition method. J. Mater. Sci. Mater. Electron. 27, 5389–5394 (2016)

    Article  Google Scholar 

  10. W.T. Yao, S.H. Yu, Y. Zhou, J. Jiang, Q.S. Wu, L. Zhang, J. Jiang, Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid–liquid phase arc discharge process. J. Phys. Chem. B 109, 14011 (2005)

    Article  Google Scholar 

  11. Y.K. Su, C.M. Shen, H.T. Yang, H.L. Li, H.J. Gao, Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route. Trans. Nonferrous Met. Soc. China 17, 783 (2007)

    Article  Google Scholar 

  12. J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008)

    Article  Google Scholar 

  13. Y. Liu, Y. Chu, M. Li, L. Li, L. Dong, In situ synthesis and assembly of copper oxide nanocrystals on copper foil via amild hydrothermal process. J. Mater. Chem. 16, 192 (2006)

    Article  Google Scholar 

  14. M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies. Catal. Commun. 10, 11–16 (2008)

    Article  Google Scholar 

  15. J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater. Lett. 61, 5236–5238 (2007)

    Article  Google Scholar 

  16. C.H. Kuo, M.H. Huang, Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C 112, 183 (2008)

    Article  Google Scholar 

  17. S. Sonia, I.J. Annsi, P.S. Kumar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photo-degradation material for textile dyes. Mater. Lett. 144, 127–130 (2015)

    Article  Google Scholar 

  18. A. Yildiz, S. Horzum, N. Serin, T. Serin, Hopping conduction in In-doped CuO thin films. Appl. Surf. Sci. 318, 105–107 (2014)

    Article  ADS  Google Scholar 

  19. W.L. Gao, S.H. Yang, S.G. Yang, L.Y. Lv, Y.W. Du, Synthesis and magnetic properties of Mn doped CuO. Phys. Lett. A 375, 180–182 (2010)

    Article  ADS  Google Scholar 

  20. P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Structural and optical study of Li doped CuO thin films on Si (100) substrate deposited by pulsed laser deposition. Appl. Surf. Sci. 307, 280–286 (2014)

    Article  Google Scholar 

  21. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, optical and room-temperature ferromagnetic properties of Fe doped CuO nanostructures. Phys. E Low Dimens. Syst. Nanostruct. 53, 193–199 (2013)

    Article  ADS  Google Scholar 

  22. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    Article  Google Scholar 

  23. S. Ravi, F. Winfred, Shashikanth, Ferromagnetism in Mn doped copper oxide nanoflake like structures with high Neel temperature. Mater. Lett. 141, 132–134 (2015)

    Article  Google Scholar 

  24. T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, M. Yu, Optical and Photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol. 51, 58–64 (2016)

    Article  Google Scholar 

  25. W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Synthesis and magnetic properties of Mn doped CuO nanowires. Phys. Lett. A 375, 180–182 (2010)

    Article  ADS  Google Scholar 

  26. A. Chamola, H. Singh, U.C. Naithani, Study of Pb(Zr0.65Ti0.35)O3 PZT (65/35) doping on structural, dielectric and conductivity properties of BaTiO3 (BT) ceramics. Adv. Mat. Lett 2(2), 148–152 (2011)

    Article  Google Scholar 

  27. Y.X. Zhang, M. Huang, F. Li, Z.Q. Wen, Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int. J. Electrochem. Sci. 8, 8645–8661 (2013)

    Google Scholar 

  28. N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater. Lett. 6, 158–164 (2015)

    Article  Google Scholar 

  29. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61, 11093–11096 (2000)

    Article  ADS  Google Scholar 

  30. G.J. Exarhos, Characterization of Optical Materials(Materials Characterization). Butterworth-Heinemann Ltd. (1993). ISBN 10: 0750692987. ISBN 13: 9780750692984

  31. D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sens. Actuators B 166, 624–631 (2012)

    Article  Google Scholar 

  32. B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37, 10244 (1988)

    Article  ADS  Google Scholar 

  33. Y. Gülen, F. Bayansal, B. Şahin, H.A. Cetinkara, H.S. Güder, Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceram. Int. 39, 6475–6480 (2013)

    Article  Google Scholar 

  34. T. Prodromakis, C. Papavassiliou, Engineering the Maxwell–Wagner polarization effect. Appl. Surf. Sci. 255, 6989 (2009)

    Article  ADS  Google Scholar 

  35. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M., Imran, M., Salahuddin et al. Tailoring structural, surface, optical, and dielectric properties of CuO nanosheets for applications in high-frequency devices. Appl. Phys. A 124, 768 (2018). https://doi.org/10.1007/s00339-018-2179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2179-z

Navigation