Skip to main content
Log in

Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdO, ZnS, and CdO/ZnS hybrid photocatalyst were prepared using a simple co-precipitation method, and its photocatalytical activity was studied. The materials were characterized using powder XRD, TEM, HRTEM, BET, Raman, optical absorption, FT-IR, Thermal analysis and PL. The XRD patterns confirmed the crystal structure of the prepared samples. The surface analysis shows that the CdO/ZnS hybrid photocatalyst have larger surface area than the CdO and ZnS. Optical analysis of the nanocomposites revealed that the bond energy decreased after adding ZnS nanoparticles due to interactions with CdO nanoparticles. Raman spectroscopy showed the phonon modes of the CdO and ZnS, and PL spectra showed the electronic interaction between them. The photo-induced electrons can be easily transferred from the CdO to the ZnS in the composite, which facilitates effective charge separation and enhances photocatalytic degradation. The highest photocatalytic activity was achieved using the CdO/ZnS hybrid photocatalyst, with which more than 92% degradation was achieved. The enhanced photocatalytic activity could be ascribed to the low recombination rate of the electron and hole pairs because of the interface action between the CdO and ZnS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.J. Halas, MRS Bull. 30, 362 (2015)

    Article  Google Scholar 

  2. R.J. Stella, G. Thirumala Rao, V.P. Manjari, B. Babu, Ch. Rama Krishna, J. Alloy Compd. 628, 39 (2015)

    Article  Google Scholar 

  3. T. Ghoshal, K. Soumitra, S. Chaudhuri, Appl. Surf. Sci. 253, 7578 (2007)

    Article  ADS  Google Scholar 

  4. V. Ramasamy, K. Praba, G. Murugadoss, Spectrochim. Acta A 96, 963 (2012)

    Article  ADS  Google Scholar 

  5. W. Liu, Mater. Lett. 60, 551 (2066)

    Article  Google Scholar 

  6. S. Kar, S. Chaudhuri, J. Phys. Chem. B 109, 3298 (2005)

    Article  Google Scholar 

  7. Y.R. Do, Y.C. Kim, S.H. Cho, J.H. Ahn, J.G. Lee, Appl. Phys. Lett. 82, 4172 (2003)

    Article  ADS  Google Scholar 

  8. L.L. Pan, G.Y. Li, S.S. Xiao, L. Zhao, J.S. Lian, J. Mater. Sci. Mater. Electron. 25, 1003 (2014)

    Article  Google Scholar 

  9. S. Rajaboopathi, S. Thambidurai, Mater. Sci. Semicon. Proc. 59, 56 (2017)

    Article  Google Scholar 

  10. J. Niu, W. Xu, H. Shen, S. Li, H. Wang, L.S. Li, Bull. Korean Chem. Soc. 33, 393 (2012)

    Article  Google Scholar 

  11. K. Kim, J.E. Park, E.S. Park, Y.C. Park, J. Kim, C. Im, M. Lee, Electrochim. Acta 121, 223 (2014)

    Article  Google Scholar 

  12. J. Mei, L.Y. Yang, L. Lai, Z.Q. Xu, C. Wang, J. Zhao, J.C. Jin, F.L. Jiang, Y. Liu, Chemosphere 112, 92 (2014)

    Article  Google Scholar 

  13. B. Lazou, I. Passagne, S. Mounicou, M.T. Delapierre, I. Puljalte, J. Szpunar, R. Lobinski, C.O. Courtes, Toxicol. Res. 3, 2 (2014)

    Google Scholar 

  14. M. Austin Derfus, C.W. Warren Chan, N. Sangeeta Bhatia, Nano Lett. 4, 11 (2004)

    Article  ADS  Google Scholar 

  15. K. Christian, L. Tim, K. Stefan, P. Teresa, J.A. Munoz, G. Hermann, S. Sonja, N. Fertig, J.P. Wolfgang, Nano Lett. 5, 331 (2005)

    Article  Google Scholar 

  16. E.S. Shibu, M. Hamada, S. Nakanishi, S. Wakida, V. Biju, Coord. Chem. Rev. 2, 263 (2014)

    Google Scholar 

  17. M. Kuppayee, G.K.V. Nachiyar, V. Ramasamy, Mater. Sci. Semicon. Proc. 15, 136 (2012)

    Article  Google Scholar 

  18. R.J. Stella, G. Thirumala Rao, B. Babu, V.P. Manjari, Ch. Venkata Reddy, R.V.S. Jaesool Shim, S.N. Ravikumar, J. Magn. Magn. Mater. 384, 6 (2015)

    Article  ADS  Google Scholar 

  19. R.M. Navarro, F. del Valle, J.L.G. Fierro, Int. J. Hydrog. Energy 33, 4265 (2008)

    Article  Google Scholar 

  20. A. Chavan, A. Chandola, S. Sridaran, P. Dutta, J. Appl. Phys. 100, 064512 (2006)

    Article  ADS  Google Scholar 

  21. R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 209, 374 (2015)

    Article  Google Scholar 

  22. J. Mu, C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen, Y. Liu, Appl. Mater. Interfaces 3, 590 (2011)

    Article  Google Scholar 

  23. L.V. Garciaa, M.I. Mendivila, G. Garcia Guillena, J.A. Aguilar Martineza, B. Krishnana, D. Avellanedaa, G.A. Castilloa, T.K. Das Roya, S. Shajia, Appl. Surf. Sci. 336, 329 (2015)

    Article  ADS  Google Scholar 

  24. M. Sathish, R.P. Viswanath, C.S. Gopinath, J. Nanosci. Nanotechnol. 9, 423 (2009)

    Article  Google Scholar 

  25. L. Saravanan, R. Jayavel, A. Pandurangan, L. Jih-Hsin, M. Hsin-Yuanb, Powder Technol. 266, 407 (2014)

    Article  Google Scholar 

  26. S.B. Jambure, C.D. Lokhande, Mater. Lett. 106, 133 (2013)

    Article  Google Scholar 

  27. M.K. Naskar, A. Patra, M. Chatterjee, J. Colloid Interface Sci. 297, 271 (2006)

    Article  Google Scholar 

  28. J.F. Xu, W. Ji, J.Y. Lin, S.H. Tang, Y.W. Du, Appl. Phys. A 66, 639 (1998)

    Article  ADS  Google Scholar 

  29. O. Kozak, P. Praus, R. Dvorsky, Chalcogenide Lett. 9, 413 (2012)

    Google Scholar 

  30. K. Kaviyarasu, E. Manikandan, P. Paulraj, S.B. Mohamed, J. Kennedy, J. Alloys Comp. 593, 67 (2014)

    Article  Google Scholar 

  31. P. SenthilKumar, M. Selvakumar, S. GaneshBabu, S. Karuthapandian, Santanu Chattopadhyay. Mater. Lett. 151, 45 (2015)

    Article  Google Scholar 

  32. Azadeh Tadjarodi, Mina Imani, Hamed Kerdari, Keyvan Bijanzad, Dorsan Khaledi, Maryam Rad, J. Nanomater. Nanotechnol. 4, 1 (2004)

    Google Scholar 

  33. J. Tauc (ed.), Amorphous and liquid semiconductors (Plenum Press, New York, 1974), p 159

  34. C.W. Litton, D.C. Reynolds, Phys. Rev. A 133, A536 (1964)

    Article  ADS  Google Scholar 

  35. J.I. Pankove, in Optical process in semiconductors (Dover Publications, Inc., New Jersey, 1971), p. 34

    Google Scholar 

  36. F.T. Thema, P. Beukes, A. Gurib-Fakim, M. Maaza, J. Alloys. Comp. 646, 1043 (2015)

    Article  Google Scholar 

  37. R. Cusco, J. Ibanez, N. Domenech-Amador, L. Artus, J. Zuniga-Perez, V. Munoz-Sanjose, J. Appl. Phys. 107, 063519 (2010)

    Article  ADS  Google Scholar 

  38. S.B. Jambure, C.D. Lokhande, Mater. Lett. 106, 133 (2013)

    Article  Google Scholar 

  39. J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Phys. Rev. B 69, 14301 (2004)

    Article  ADS  Google Scholar 

  40. D.S. Raj, R. Jayaprakash, T. Prakash, S. Kumar, G. Neri, T. Krishnakumar, Appl. Surf. Sci. 266, 268 (2013)

    Article  ADS  Google Scholar 

  41. K. Anandhan, R. Thilak Kumar, Spectrochim. Acta A 149, 476 (2015)

    Article  Google Scholar 

  42. K. Giribabu, R. Suresh, R. Manigandan, A. Vijayaraj, R. Prabu, V. Narayanan, Bull. Korean Chem. Soc. 33, 2910 (2012)

    Article  Google Scholar 

  43. T. Aswani, B. Babu, V.P. Manjari, R.J. Stella, G. Thirumala Rao, Ch. Rama Krishna, R.V.S.S.N. Ravikumar, Spectrochim. Acta A 121, 544 (2014)

    Article  ADS  Google Scholar 

  44. B. Babu, G. ThirumalaRao, V.P. Manjari, K. Ravindranadh, R.J. Stella, RVSSN Ravikumar. J. Mater. Sci. Mater. Electron. 25, 4179 (2014)

    Article  Google Scholar 

  45. S. Kakarndee, S. Juabrum, Suwat Nanan. Mater. Lett. 164, 198 (2016)

    Article  Google Scholar 

  46. N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L.J. Kennedy, G. Sekaran, J.J. Vijaya, Powder Technol. 211, 250 (2011)

    Article  Google Scholar 

  47. A.S. Lanje, R.S. Ningthoujam, S.J. Sharma, R.M. Pode, Indian. J. Pure. Appl. Phys. 49, 234 (2011)

    Google Scholar 

  48. M. Ghosh, C.N.R. Rao, Chem. Phys. Lett. 393, 493 (2004)

    Article  ADS  Google Scholar 

  49. L. Yang, Z. Zhang, J. Yang, Y. Yan, Y. Sun, G. Che, Z. Wang, S. Zhang, Super Lattice Microstruct. 60, 426 (2013)

    Article  ADS  Google Scholar 

  50. R.L. Morales, O.Z. Angel, G.T. Delgado, Appl. Phys. A Mater. Proc. 73, 61 (2011)

    Article  Google Scholar 

  51. P. Rai, J.N. Jo, I.H. Lee, Y.T. Yu, Mater. Chem. Phys. 124, 406 (2010)

    Article  Google Scholar 

  52. T. Prakash, G. Neri, E. Ranjith Kumar, J. Alloy Compd. 624, 258 (2015)

    Article  Google Scholar 

  53. Ch. Venkata Reddy, C. Byon, B. Narendra, D. Baskar, G. Srinivas, J. Shim, S.V. Prabhakar Vattikuti, Superlattice Microstruct. 82, 165 (2015)

    Article  ADS  Google Scholar 

  54. Bhupender Pal, Bonamali Pal, Chem. Eng. J. 263, 200 (2015)

    Article  Google Scholar 

  55. J.P. Ge, Y.D. Li, Sel. Adv. Funct. Mater. 4, 157 (2044)

    Google Scholar 

  56. Perumal Devaraji, Naveen K. Sathu, Chinnakonda S. Gopinath, ACS Catal. 4, 2844 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) and funded by the Korean government (MEST) (NRF-2015R1A2A2A10003741).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ch. Venkata Reddy or Jaesool Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkata Reddy, C., Bandaru, N., Shim, J. et al. Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules. Appl. Phys. A 123, 396 (2017). https://doi.org/10.1007/s00339-017-1013-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1013-3

Keywords

Navigation