Skip to main content
Log in

Fatigue Effects in Elastic Materials with Variational Damage Models: A Vanishing Viscosity Approach

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the existence of quasistatic evolutions for a family of gradient damage models which take into account fatigue, that is the process of weakening in a material due to repeated applied loads. The main feature of these models is the fact that damage is favoured in regions where the cumulation of the elastic strain (or other relevant variables, depending on the model) is higher. To prove the existence of a quasistatic evolution, we follow a vanishing viscosity approach based on two steps: we first let the time step \(\tau \) of the time discretisation and later the viscosity parameter \(\varepsilon \) go to zero. As \(\tau \rightarrow 0\), we find \(\varepsilon \)-approximate viscous evolutions; then, as \(\varepsilon \rightarrow 0\), we find a rescaled approximate evolution satisfying an energy-dissipation balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alessi, R., Marigo, J.-J., Vidoli, S.: Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch. Ration. Mech. Anal. 214, 575–615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Alessi, R., Marigo, J.-J., Vidoli, S.: Gradient damage models coupled with plasticity: variational formulation and main properties. Mech. Mater. 80(Part B), 351–367 (2015)

    Article  Google Scholar 

  • Alessi, R., Ambati, M., Gerasimov, T., Vidoli, S., De Lorenzis, L.: Comparison of Phase-Field Models of Fracture Coupled with Plasticity, pp. 1–21. Springer, Cham (2018a)

    Google Scholar 

  • Alessi, R., Marigo, J.-J., Maurini, C., Vidoli, S.: Coupling damage and plasticity for a phase-field regularisation of brittle, cohesive and ductile fracture: one-dimensional examples. Int. J. Mech. Sci. 149, 559–576 (2018b)

    Article  Google Scholar 

  • Alessi, R., Vidoli, S., De Lorenzis, L.: A phenomenological approach to fatigue with a variational phase-field model: the one-dimensional case. Eng. Fract. Mech. 190, 53–73 (2018c)

    Article  Google Scholar 

  • Aubin, J.-P.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963)

    MathSciNet  MATH  Google Scholar 

  • Bouchitté, G., Mielke, A., Roubíček, T.: A complete-damage problem at small strains. Z. Angew. Math. Phys. 60, 205–236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, American Elsevier, Amsterdam-London, New York (1973)

    MATH  Google Scholar 

  • Crismale, V.: Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Control Optim. Calc. Var. 22, 883–912 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Crismale, V.: Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann. Mat. Pura Appl. (4) 196, 641–685 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Crismale, V., Lazzaroni, G.: Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc. Var. Partial Differ. Equ. 55, Art. 17, 54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Crismale, V., Orlando, G.: A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in \(W^{1, n}\). NoDEA Nonlinear Differ. Equ. Appl. 25, Art. 16, 20 (2018)

    Article  MATH  Google Scholar 

  • Crismale, V., Lazzaroni, G., Orlando, G.: Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue. Math. Models Methods Appl. Sci. 28, 1371–1412 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences, vol. 78, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  • Dal Maso, G., DeSimone, A., Solombrino, F.: Quasistatic evolution for Cam-Clay plasticity: a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differ. Equ. 40, 125–181 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dal Maso, G.: Quasistatic evolution for Cam-Clay plasticity: properties of the viscosity solution. Calc. Var. Partial Differ. Equ. 44, 495–541 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Dal Maso, G., Orlando, G., Toader, R.: Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case. Calc. Var. Partial Differ. Equ. 55, Art. 45, 39 (2016)

    MathSciNet  MATH  Google Scholar 

  • Duchoň, M., Maličký, P.: A Helly theorem for functions with values in metric spaces. Tatra Mt. Math. Publ. 44, 159–168 (2009)

    MathSciNet  MATH  Google Scholar 

  • Dunford, N., Schwartz, J.T.: Linear operators. Part I, Wiley Classics Library. John, New York (1988). General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication

  • Francfort, G.A., Garroni, A.: A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182, 125–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  • Gröger, K.: A \(W^{1, p}\)-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283, 679–687 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Herzog, R., Meyer, C., Wachsmuth, G.: Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions. J. Math. Anal. Appl. 382, 802–813 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23, 565–616 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Knees, D., Rossi, R., Zanini, C.: A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains. Nonlinear Anal. Real World Appl. 24, 126–162 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Knees, D., Rossi, R., Zanini, C.: Balanced viscosity solutions to a rate-independent system for damage. Eur. J. Appl. Math. 29, 1–59 (2018)

    Article  MATH  Google Scholar 

  • Mielke, A., Roubíček, T.: Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci. 16, 177–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Application. Applied Mathematical Sciences, vol. 193. Springer, New York (2015)

    Book  MATH  Google Scholar 

  • Mielke, A., Zelik, S.: On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13, 67–135 (2014)

    MathSciNet  MATH  Google Scholar 

  • Mielke, A., Rossi, R., Savaré, G.: Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. (JEMS) 18, 2107–2165 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Minotti, L., Savaré, G.: Viscous corrections of the time incremental minimization scheme and visco-energetic solutions to rate-independent evolution problems. Arch. Ration. Mech. Anal. 227, 477–543 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Negri, M.: A unilateral \(L^{2}\)-gradient flow and its quasi-static limit in phase-field fracture by an alternate minimizing movement. Adv. Calc. Var. (2016). https://doi.org/10.1515/acv-2016-0028

  • Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53, 525–589 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Pham, K., Marigo, J.-J.: From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models. Contin. Mech. Thermodyn. 25, 147–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Schijve, J.: Fatigue of Structures and Materials. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  • Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. (4) 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Skibicki, D.: Phenomena and Computational Models of Non-proportional Loadings. Springer, Cham (2014)

    Google Scholar 

  • Stephens, R., Fatemi, A., Stephens, R., Fuchs, H.: Metal Fatigue in Engineering. A Wiley-Interscience publication. Wiley, New York (2000)

    Google Scholar 

  • Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  • Thomas, M.: Quasistatic damage evolution with spatial BV-regularization. Discrete Contin. Dyn. Syst. Ser. S 6, 235–255 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, M., Mielke, A.: Damage of nonlinearly elastic materials at small strain—existence and regularity results. ZAMM Z. Angew. Math. Mech. 90, 88–112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Adriana Garroni for several interesting discussions and fruitful advices. Roberto Alessi has been supported by the MATHTECH-CNR-INdAM project and the MIUR-DAAD Joint Mobility Program: “Variational approach to fatigue phenomena with phase-field models: modeling, numerics and experiments”. Vito Crismale has been supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, and acknowledges the financial support from the Laboratory Ypatia and the CMAP. He is currently funded by the Marie Skłodowska-Curie Standard European Fellowship No. 793018. Gianluca Orlando has been supported by the Alexander von Humboldt Foundation. Vito Crismale and Gianluca Orlando acknowledge the kind hospitality of the Department of Mathematics of Sapienza University of Rome, where part of this research was developed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Crismale.

Additional information

Communicated by Paul Newton.

A Auxiliary Results

A Auxiliary Results

1.1 The Essential Variation

In this appendix, X denotes a measure space. We do not label the measure on X and the notions of \(L^p\) space and of a.e. equivalence refer to the measure on X. Moreover, we fix \(n \ge 1\).

We define here the notion of essential variation, namely the variation for a time-dependent family of measurable functions, in the sense of a.e. inequality.

Definition A.1

Let us consider a function \(t \mapsto \zeta (t)\), with \(\zeta (t) :X \rightarrow \mathbb {R}^n\). Let \(0 \le s \le t \le T\). The essential variation of \(\zeta \) in the interval [st] is the function \({{\mathrm{ess\,Var}}}(\zeta ;s,t) :X \rightarrow [0,+\infty ]\) defined by

$$\begin{aligned} {{\mathrm{ess\,Var}}}(\zeta ;s,t) := \mathop {{{\mathrm{ess\,sup}}}}\limits _{s=s_0< \dots < s_m = T} \Big \{ \sum _{j=0}^m |\zeta (s_j) - \zeta (s_{j-1})| \Big \}, \end{aligned}$$

where the essential supremum is taken over all partitions \(0=s_0< \dots < s_m = t\), \(m \in \mathbb {N}\).

Remark A.2

For every \(t_1 \le t_2 \le t_3\), we have

$$\begin{aligned} {{\mathrm{ess\,Var}}}(\zeta ;t_1,t_3) = {{\mathrm{ess\,Var}}}(\zeta ;t_1,t_2) + {{\mathrm{ess\,Var}}}(\zeta ;t_2,t_3) \, \quad \text {a.e. in } X. \end{aligned}$$

For completeness, we recall here the definition of the essential supremum of a family of measurable functions.

Definition A.3

Let \((v_i)_{i\in I}\) be a family of measurable functions from X to \([-\infty ,\infty ]\). Let \({\overline{v}} :X \rightarrow [-\infty ,\infty ]\) be a measurable function such that

  1. (i)

    \({\overline{v}} \ge v_i\) a.e. in X, for every \(i\in I\);

  2. (ii)

    if \(v :X \rightarrow [-\infty ,\infty ]\) is a measurable function such that \(v \ge v_i\) a.e. in X, for every \(i\in I\), then \(v \ge {\overline{v}}\) a.e. in X.

The functions \({\overline{v}}\) is called an essential supremum of the family \((v_i)_{i\in I}\). In fact, there exists a unique (up to a.e. equivalence) essential supremum \({\overline{v}}\) of the family \((v_i)_{i \in I}\). We denote it by \( \displaystyle {{\mathrm{ess\,sup}}}_{i \in I} v_i := \overline{v}\).

In the next proposition, we provide an explicit formula for the essential variation of a function \(\zeta \) that is absolutely continuous in time. A quick survey about the notion and the main properties of the Bochner integral can be found in appendix of Brezis (1973); for a more detailed treatment of the subject, we refer to Dunford and Schwartz (1988).

Proposition A.4

Let \(p \in [1, \infty )\), and let \(\zeta \in AC([0,T];L^p(X;\mathbb {R}^n))\). Then

$$\begin{aligned} {{\mathrm{ess\,Var}}}(\zeta ;0,t)(x) = \int _0^t |{\dot{\zeta }}(r;x) | {\, \mathrm {d} r}, \quad \text {for a.e. } x \in X , \end{aligned}$$

where the integral in the right-hand side is a Bochner integral in \(L^p(X)\).

Proof

We start by claiming that

$$\begin{aligned} {{\mathrm{ess\,Var}}}(\zeta ;0,\cdot ) \in AC([0,T];L^p(X)) \quad \text {and} \quad \frac{\, \mathrm {d}}{{\, \mathrm {d} t}} {{\mathrm{ess\,Var}}}(\zeta ;0,t) = |{\dot{\zeta }}(t)| \text { in } L^p(X). \end{aligned}$$
(A.1)

To prove the claim, let us fix \(s \le t\) and a partition \(s=s_0< \dots < s_m = t\). By the absolute continuity of \(\zeta \), we obtain that

$$\begin{aligned} \sum _{j=1}^m |\zeta (s_j) - \zeta (s_{j-1})| = \sum _{j=1}^m \Big | \int _{s_{j-1}}^{s_j} {\dot{\zeta }}(r) \, {\, \mathrm {d} r} \Big | \le \sum _{j=1}^m \int _{s_{j-1}}^{s_j} | {\dot{\zeta }}(r) | \, {\, \mathrm {d} r} = \int _{s}^{t} | {\dot{\zeta }}(r) | \, {\, \mathrm {d} r} \, \end{aligned}$$
(A.2)

a.e. in X, where the last integral is a Bochner integral in \(L^p(X)\). Note that the second inequality in (A.2) can be proved, e.g., with an approximation argument via step functions. Taking the essential supremum in (A.2), by Remark A.2 we deduce that

$$\begin{aligned} {{\mathrm{ess\,Var}}}(\zeta ;0,t) - {{\mathrm{ess\,Var}}}(\zeta ;0,s)\le \int _{s}^{t} | {\dot{\zeta }}(r) | \, {\, \mathrm {d} r} \quad \text { a.e. in } X. \end{aligned}$$
(A.3)

Inequality (A.3) computed for \(s = 0\) yields, in particular, that \({{\mathrm{ess\,Var}}}(\zeta ; 0, t) \in L^p(X)\) for every \(t \in [0,T]\). Moreover, it shows that \({{\mathrm{ess\,Var}}}(\zeta ;0,\cdot ) \in AC([0,T];L^p(X))\). By (A.3) and by Lebesgue’s differentiation theorem for vector-valued functions (Dunford and Schwartz 1988, p. 217), we get that

$$\begin{aligned} \frac{\, \mathrm {d}}{{\, \mathrm {d} t}} {{\mathrm{ess\,Var}}}(\zeta ;0,t) = \lim _{s\rightarrow t^-} \frac{{{\mathrm{ess\,Var}}}(\zeta ;0,t) - {{\mathrm{ess\,Var}}}(\zeta ;0,s)}{t-s} \le | {\dot{\zeta }}(t) | \end{aligned}$$

if t is a differentiability point for \({{\mathrm{ess\,Var}}}(\zeta ;0,\cdot )\) and it is a Lebesgue point for \(|{\dot{\zeta }}|\), the limit being taken with respect to the \(L^p\)-norm.

On the other hand, \(s < t\) is a particular partition of the interval [st]; therefore,

$$\begin{aligned} \frac{|\zeta (t) - \zeta (s)|}{t-s} \le \frac{{{\mathrm{ess\,Var}}}(\zeta ; 0, t) - {{\mathrm{ess\,Var}}}(\zeta ; 0, s)}{t-s} \, \quad \text {a.e. in } X. \end{aligned}$$

Taking the limit as \(s \rightarrow t^-\) with respect to the \(L^p\)-norm of both sides, we obtain

$$\begin{aligned} | {\dot{\zeta }}(t) | \le \frac{\, \mathrm {d}}{{\, \mathrm {d} t}} {{\mathrm{ess\,Var}}}(\zeta ;0,t) \, \quad \text {a.e. in } X, \end{aligned}$$

if t is a differentiability point for \({{\mathrm{ess\,Var}}}(\zeta ;0,\cdot )\) and \(\zeta \). This proves that \(\frac{\, \mathrm {d}}{{\, \mathrm {d} t}} {{\mathrm{ess\,Var}}}(\zeta ;0,t) = | {\dot{\zeta }}(t) |\).

Finally, since \({{\mathrm{ess\,Var}}}(\zeta ;0,\cdot ) \in AC([0,T];L^p(X))\), we conclude that

$$\begin{aligned} {{\mathrm{ess\,Var}}}(\zeta ;0,t) = \int _0^t \frac{\, \mathrm {d}}{{\, \mathrm {d} t}} {{\mathrm{ess\,Var}}}(\zeta ;0,r) \, {\, \mathrm {d} r} = \int _0^t | {\dot{\zeta }}(t) | \, {\, \mathrm {d} r} \, \quad \text {a.e. in } X. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessi, R., Crismale, V. & Orlando, G. Fatigue Effects in Elastic Materials with Variational Damage Models: A Vanishing Viscosity Approach. J Nonlinear Sci 29, 1041–1094 (2019). https://doi.org/10.1007/s00332-018-9511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9511-9

Keywords

Mathematics Subject Classification

Navigation