Skip to main content

Advertisement

Log in

Transgenic rice endosperm as a bioreactor for molecular pharming

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plants provide a promising expression platform for producing recombinant proteins with several advantages in terms of high expression level, lower production cost, scalability, and safety and environment-friendly. Molecular pharming has been recognized as an emerging industry with strategic importance that could play an important role in economic development and healthcare in China. Here, this review represents the significant advances using transgenic rice endosperm as bioreactor to produce various therapeutic recombinant proteins in transgenic rice endosperm and large-scale production of OsrHSA, and discusses the challenges to develop molecular pharming as an emerging industry with strategic importance in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An N, Ou J et al (2013) Expression of a functional recombinant human basic fibroblast growth factor from transgenic rice seeds. Int J Mol Sci 14(2):3556–3567

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Andersen MR, Hyun Nam J et al (2011) Protein glycosylation: analysis, characterization, and engineering. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–59

  • Avesani L, Falorni A et al (2003) Improved in planta expression of the human islet autoantigen glutamic acid decarboxylase (GAD65). Transgenic Res 12(2):203–212

    Article  PubMed  CAS  Google Scholar 

  • Bardor M, Faveeuw C et al (2003) Immunoreactivity in mammals of two typical plant glyco-epitopes, core α (1, 3)-fucose and core xylose. Glycobiology 13(6):427–434

    Article  PubMed  CAS  Google Scholar 

  • Benchabane M, Goulet C et al (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6(7):633–648

    Article  PubMed  CAS  Google Scholar 

  • Bollen A, Herzog A et al (1983) Cloning and expression in Escherichia coli of full-length complementary DNA coding for human alpha 1-antitrypsin. DNA 2(4):255–264

    Article  PubMed  CAS  Google Scholar 

  • Boothe J, Nykiforuk C et al (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8(5):588–606

    Article  PubMed  CAS  Google Scholar 

  • Chen LJ, Lee DS et al (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93(1):67–73

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Singh ND et al (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14(12):669–679

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fernandez-San Millan A, Farran I et al (2007) Expression of recombinant proteins lacking methionine as N-terminal amino acid in plastids: human serum albumin as a case study. J Biotechnol 127(4):593–604

    Article  PubMed  CAS  Google Scholar 

  • Furtado A, Henry R et al (2008) Comparison of promoters in transgenic rice. Plant Biotechnol J 6:679–693

    Article  PubMed  CAS  Google Scholar 

  • Gealy DR, Mitten DH et al (2003) Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): implications for weed management 1. Weed Technol 17(3):627–645

    Article  Google Scholar 

  • Greenham T, Altosaar I (2013) Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals. Methods Mol Biol 956:311–326

    Article  PubMed  Google Scholar 

  • He Y, Ning T et al (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci USA 108(47):19078–19083

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath H, Huang J et al (2000) The production of recombinant proteins in transgenic barley grains. Proc Natl Acad Sci USA 97:1914–1919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hwang Y, Yang D et al (2002) Analysis of the rice endospermspecific globulin promoter in transformed rice cells. Plant Cell Rep 20:842–847

    Article  CAS  Google Scholar 

  • Karnaukhova E, Ophir Y et al (2006) Recombinant human alpha-1 proteinase inhibitor: towards therapeutic use. Amino Acids 30(4):317–332

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Lee J et al (2012) The suppression of the glutelin storage protein gene in transgenic rice seeds results in a higher yield of recombinant protein. Plant Biotechnol Rep 6:347–353

    Article  Google Scholar 

  • Krishnan H, Franceschi V et al (1986) Immunochemical studies on the role of the golgi complex in protein-body formation in rice seeds. Planta 169(4):471–480

    Article  PubMed  CAS  Google Scholar 

  • Kusnadi AR, Nikolov ZL et al (1997) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol Bioeng 56(5):473–484

    Article  PubMed  CAS  Google Scholar 

  • Li W, Xie T et al (2013) A short peptide in rice glutelin directs trafficking of protein into the protein storage vacuoles of the endosperm cells. Plant Mol Biol Rep 31:1492–1505

    Google Scholar 

  • Luo J, Ning T et al (2009) Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res 8(2):829–837

    Article  PubMed  CAS  Google Scholar 

  • Ma JK-C, Hikmat BY et al (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4(5):601–606

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM et al (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4(10):794–805

    Article  PubMed  CAS  Google Scholar 

  • Messeguer J, Fogher C et al (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor Appl Genet 103(8):1151–1159

    Article  CAS  Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38(1–2):77–99

    Article  PubMed  CAS  Google Scholar 

  • Napier R, Fowke L et al (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102(2):261–271

    PubMed  CAS  Google Scholar 

  • Ning T, Xie T et al (2008) Oral administration of recombinant human granulocyte-macrophage colony stimulating factor expressed in rice endosperm can increase leukocytes in mice. Biotechnol Lett 30(9):1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Obembe OO, Popoola JO et al (2011) Advances in plant molecular farming. Biotechnol Adv 29(2):210–222

    Article  PubMed  Google Scholar 

  • Ogawa M, Kumamaru T et al (1987) Purification of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol 28(8):1517–1527

    CAS  Google Scholar 

  • Oono Y, Wakasa Y et al (2010) Analysis of ER stress in developing rice endosperm accumulating b-amyloid peptide. Plant Biotechnol J 8:691–718

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Ma JK (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58(1):58–67

    Article  PubMed  CAS  Google Scholar 

  • Qu L, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113–125

    Article  CAS  Google Scholar 

  • Rayon C, Lerouge P et al (1998) The protein N-glycosylation in plants. J Exp Bot 49(326):1463–1472

    Article  CAS  Google Scholar 

  • Rong J, Xia H et al (2004) Asymmetric gene flow between traditional and hybrid rice varieties (Oryza sativa) indicated by nuclear simple sequence repeats and implications for germplasm conservation. New Phytol 163(2):439–445

    Article  Google Scholar 

  • Rong J, Song Z et al (2005) Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing. New Phytol 168(3):559–566

    Article  PubMed  CAS  Google Scholar 

  • Schähs M, Strasser R et al (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol J 5(5):657–663

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27(6):811–832

    Article  PubMed  CAS  Google Scholar 

  • Shigemitsu T, Ozaki S et al (2012) Production of human growth hormone in transgenic rice seeds: co-introduction of RNA interference cassette for suppressing the gene expression of endogenous storage proteins. Plant Cell Rep 31:539–549

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Lu B et al (2012) A study of pollen viability and longevity in Oryza rufipogon, O. sativa, and their hybrids. Int Rice Res Notes 26(2):31–32

  • Song ZP, Lu BR et al (2003) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol 157(3):657–665

    Article  CAS  Google Scholar 

  • Stoger E, Sack M et al (2002) Practical considerations for pharmaceutical antibody production in different crop systems. Mol Breeding 9(3):149–158

    Article  CAS  Google Scholar 

  • Tackaberry ES, Prior FA et al (2008) Sustained expression of human cytomegalovirus glycoprotein B (UL55) in the seeds of homozygous rice plants. Mol Biotechnol 40(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Utsumi S et al (2003) Foreign gene products can be enhanced by introduction into low storage protein mutants. Plant Biotechnol J 1(6):411–422

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Hiroi T et al (2005) A rice-based edible vaccine expressing multiple T cell epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci USA 102:17525–17530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takaiwa F, Takagi H et al (2007) Endosperm tissue is a good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J 5:84–92

    Article  PubMed  CAS  Google Scholar 

  • Torres E, Vaquero C et al (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8(6):441–449

    Article  PubMed  CAS  Google Scholar 

  • van Ree R, Cabanes-Macheteau M et al (2000) β (1, 2)-xylose and α (1, 3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. J Biol Chem 275(15):11451–11458

    Article  PubMed  Google Scholar 

  • Wu C, Adachi T et al (1998) Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol 39:885–889

    Article  CAS  Google Scholar 

  • Wu J, Yu L et al (2007) Oral immunization with transgenic rice seeds expressing VP2 protein of infectious bursal disease virus induces protective immune responses in chickens. Plant Biotechnol J 5:570–578

    Article  PubMed  CAS  Google Scholar 

  • Xie T, Qiu Q et al (2008) A biologically active rhIGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides 29(11):1862–1870

    Article  PubMed  CAS  Google Scholar 

  • Yamagata H, Sugimoto T et al (1982) Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70(4):1094–1100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang D, Wu L et al (2001) Expression of the REB transcriptional activator in rice grains improves the yield of recombinant proteins whose genes are controlled by a Reb-responsive promoter. Proc Natl Acad Sci USA 98(20):11438–11443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang D, Guo F et al (2003) Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta 216:597–603

    PubMed  CAS  Google Scholar 

  • Yang L, Tada Y et al (2006) A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett 580:3315–3320

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Suzuki K et al (2007) Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy. Plant Biotechnol J 5:815–826

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Wakasa Y et al (2008) Biopharming to increase bioactive peptides in rice seed. J AOAC Int 91(4):957–964

    PubMed  CAS  Google Scholar 

  • Yang L, Hirose S et al (2012) Recombinant protein yield in rice seed is enhanced by specific suppression of endogenous seed proteins at the same deposit site. Plant Biotechnol J 10:1035–1045

    Article  PubMed  CAS  Google Scholar 

  • Yasuda H, Hirose S et al (2009) Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol 50(8):1532–1543

    Article  PubMed  CAS  Google Scholar 

  • Zeitlin L, Olmsted SS et al (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16(13):1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Shi J et al (2012) Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. J Biotechnol 164(2):300–308

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Jiang D et al (2013) The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death. Plant Mol Biol 83:153–161

    Article  PubMed  CAS  Google Scholar 

  • Zimran A, Brill-Almon E et al (2011) Pivotal trial with plant cell–expressed recombinant glucocerebrosidase, taliglucerase alfa, a novel enzyme replacement therapy for Gaucher disease. Blood 118(22):5767–5773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichnag Yang.

Additional information

Communicated by N. Stewart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Supplementary material 2 (DOC 735 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, J., Guo, Z., Shi, J. et al. Transgenic rice endosperm as a bioreactor for molecular pharming. Plant Cell Rep 33, 585–594 (2014). https://doi.org/10.1007/s00299-013-1559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-013-1559-2

Keywords

Navigation