Skip to main content
Log in

High accumulation of dehydrodiconiferyl alcohol-4-β-d-glucoside in free and immobilized Linum usitatissimum cell cultures

  • Physiology and Biochemistry
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

As flaxseed mainly accumulates lignans (secoisolariciresinol diglucoside and matairesinol), these compounds were barely or not detected in plant cell suspensions initiated from Linum usitatissimum. In contrast, these cell suspensions were shown to accumulate substantial amounts of a neolignan identified as dehydrodiconiferyl alcohol-4-β-d-glucoside (DCG) (up to 47.7 mg g−1 DW). The formation of this pharmacologically active compound was evaluated as a function of cell growth and in relation to phytohormone balance of the culture media. After establishment of efficient culture conditions, production of DCG was investigated in immobilized plant cell suspensions initiated from plantlet roots of L. usitatissimum. The results indicate that immobilization enhances the DCG production up to 60.0 mg g−1 DW but depresses the cell growth resulting in no improvement of the total DCG yield. Nevertheless, with immobilized cell suspensions, a release of DCG into the medium is observed allowing an easier recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP:

benzylaminopurine

COSY:

correlation spectroscopy

DCG:

dehydrodiconiferyl alcohol-4-β-d-glucoside

DMSO:

dimethylsulfoxide

DW:

dry weight

ESI-MS:

electrospray ionization mass spectometry

EtOH:

ethanol

FDA:

fluorescein diacetate

FW:

fresh weight

HMBC:

heteronuclear multiple bond correlation

HPLC:

high performance liquid chromatography

HSQC:

heteronuclear single quantum correlation

LS medium:

Linsmaier and Skoog medium

NAA:

naphthaleneacetic acid

NMR:

nuclear magnetic resonance

References

  • Adlercreutz H, Mazur W (1997) Phyto-oestrogens and Western diseases. Ann Med 29:95–120

    PubMed  CAS  Google Scholar 

  • Arens H, Fischer H, Leyck S, Römer A, Ulbrich B (1985) Antiinflammatory compounds from Plagiorhegma dubium cell culture. Planta Med 1:52–56

    Article  PubMed  Google Scholar 

  • Archambault J, Williams RD, Bédard C, Chavarie C (1996) Production of sanguinarine by elicited plant cell culture I. Shake flask suspension cultures. J Biotechnol 46:95–105

    Article  CAS  Google Scholar 

  • Arroo RRJ, Alfermann AW, Medarde M, Petersen M, Pras N, Woolley JG (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1:27–35

    Article  CAS  Google Scholar 

  • Changzeng W, Zhongjian J (1997) Lignan, phenylpropanoid and iridoid glycosides from Pedicularis torta. Phytochemistry 45:159–166

    Article  CAS  Google Scholar 

  • Charlet S, Bensaddek L, Raynaud S, Gillet F, Mesnard F, Fliniaux MA (2002) An HPLC procedure for the quantification of anhydrosecoisolariciresinol, Application to the evaluation of flax lignan content. Plant Physiol Biochem 40:225–229

    Article  CAS  Google Scholar 

  • Charlet S, Gillet F, Villarreal ML, Barbotin JN, Fliniaux MA, Nava-Saucedo JE (2000) Immobilisation of Solanum chrysotrichum plant cells within Ca-alginate gel beads to produce an antimycotic spirostanol saponin. Plant Physiol Biochem 38:875–880

    Article  CAS  Google Scholar 

  • Dörnenburg H, Knorr D (1995) Strategies for the improvements of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 17:674–684

    Article  Google Scholar 

  • Ford JD, Huang KS, Wang HB, Davin LB, Lewis NG (2001) Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. J Nat Prod 64:1388–1397

    Article  PubMed  CAS  Google Scholar 

  • Gillet F, Roisin C, Fliniaux MA, Jacquin-Dubreuil A, Barbotin JN, Nava-Saucedo JE (2000) Immobilization of Nicotiana tabacum cell suspensions within calcium alginate gel beads for the production of enhanced amounts of scopolin. Enzyme Microb Technol 26:229–234

    Article  PubMed  Google Scholar 

  • Komaraiah P, Ramakrishna SV, Reddanna P, Kavi Kishor PB (2003) Enhanced production of plumbagin in immobilized cells of Plumbago rosea by elicitation and in situ adsorption. J Biotechnol 101:181–187

    Article  PubMed  CAS  Google Scholar 

  • Krikorian AD, Kelly K, Smith DL (1990) Hormones in tissue culture and micro-propagation. In: Davies PJ (ed) Plant hormones and their role in growth and development. Kluwer Academic Publishers, Dordrecht, pp 597–598

    Google Scholar 

  • Lewis NG, Davin LB (1999) Lignans: biosynthesis and function. In: Barton D, Nakanishi K, Meth-Cohn O (eds) Comprehensive natural products chemistry. Elsevier, London, pp 639–712

    Google Scholar 

  • Liau S, Ibrahim RK (1973) Biochemical differenciation in flax tissue culture. Phenolic compounds. Can J Bot 51:820–824

    CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Matsubara Y, Yusa T, Sawabe A, Iizuka Y, Okamoto K (1991) Structure and physiological activity of phenyl propanoid glycosides in Lemon (Citrus limon Burm. f.) peel. Agric Biol Chem 55:647–650

    CAS  Google Scholar 

  • Nava Saucedo JE, Roisin C, Barbotin JN (1996) Complexity and heterogeneity of microenvironments in immobilized systems. In: Wijffels R (ed) Immobilized cells. Basics and applications. Elsevier Science, the Netherlands, pp 39–46

    Google Scholar 

  • Orr JD, Lynn DG (1991) Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol 98:343–352

    Article  Google Scholar 

  • Ozeki Y, Komamine A, Tanaka Y (1990a) Induction and repression of phenylalanine ammonia-lyase and chalcone synthase enzyme proteins and mRNA in carrot cell suspension cultures regulated by 2,4-d. Physiol Plant 78:379–387

    Article  Google Scholar 

  • Ozeki Y, Matsui K, Sakuta M, Matsuoka M, Ohashi Y, Kano-Murakami T, Yamamoto N, Tanaka Y (1990b) Differential regulation of phenyalanine ammonia-lyase genes during anthocyanin synthesis by transfer effect in carrot cell suspension cultures. Physiol Plant 80:379–387

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Pool-Zobel BL, Adlercreutz H, Glei M, Liegibel UM, Sittlington J, Rowland I, Wähälä K, Rechkemmer G (2000) Isoflavonoids and lignans have different potentials to modulate oxidative genetic damage in human colon cells. Carcinogenesis 21:1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Roisin C, Gillet-Manceau F, Nava Saudeco JE, Fliniaux MA, Jacquin-Dubreuil A, Barbotin JN (1997) Enhanced production of scopolin by Solanum aviculare cells immobilized within Ca-alginate gel beads. Plant Cell Rep 16:549–553

    Google Scholar 

  • Salama O, Chaudhuri RK, Sticher O (1981) A lignan glucoside from Euphrasia rostkoviana. Phytochemistry 20:2603–2604

    Article  CAS  Google Scholar 

  • Sato F, Yamada Y (1984) High berberine-producing cultures of coptis japonica cells. Phytochemistry 23:281–285.

    Article  CAS  Google Scholar 

  • Sicilia T, Niemeyer HB, Honig DM, Metzler M (2003) Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. J Agric Food Chem 51:1181–1188

    Article  PubMed  CAS  Google Scholar 

  • Skjåk-Braek G, Espevik T (1996) Application of alginate gels in biotechnology and biomedecine. Carbohydr Eur 14:19–25

    Google Scholar 

  • Tsuji T, Kawasaki Y, Takeshima T, Tanaka S (1995) A new fluorescence staining assay for visualizing living microorganisms in soil. Appl Environ Microbiol 61:3415–3421

    PubMed  CAS  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    Article  CAS  Google Scholar 

  • Wang CZ, Jia ZJ (1997) Neolignan glycosides from Pedicularis longiflora. Planta Med 63:241–244

    Article  PubMed  CAS  Google Scholar 

  • Wang LQ, Meselhy MR, Li Y, Qin GW, Hattori M (2000) Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem Pharm Bull 48:1606–1610

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Inoue K, Yazaki K (2000) Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochemistry 53:651–657

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa F, Deyama T, Takizawa N, Usmanghani K, Ahmad M (1990) The constitutents of Cistanche tubulosa (Schrenk) Hook.f. II. Isolation and structures of a new phenylethanoid glycoside and a new neolignan glycoside. Chem Pharm Bull 38:1927–1930

    CAS  Google Scholar 

Download references

Acknowledgements

S. C. wishes to thank the Conseil Regional de Picardie for financing his doctoral grant. We also thank INRA (Institut National de la Recherche Agronomique) for providing flax seeds and whole plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Baltora-Rosset.

Additional information

Communicated by M. S. Petersen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attoumbré, J., Charlet, S., Baltora-Rosset, S. et al. High accumulation of dehydrodiconiferyl alcohol-4-β-d-glucoside in free and immobilized Linum usitatissimum cell cultures. Plant Cell Rep 25, 859–864 (2006). https://doi.org/10.1007/s00299-006-0137-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0137-2

Keywords

Navigation