Skip to main content
Log in

Screening of crystalline species and enhanced nucleation of enantiomeric poly(lactide) systems by melt-quenching

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effects of quenching from the melt on the isothermal crystallization of star-shaped four-armed stereo diblock poly(lactide) (4-LD) and four-armed poly(l-lactide) (4-L) polymers with different l-lactyl unit contents as low crystallizability models for the stereoblock copolymers or blends of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) were investigated. Quenching induced both stereocomplex (SC)- and homo-crystallization of non-equimolar 4-LD polymers with l-lactyl unit contents around 30 and 70%, wherein both SC- and homo-crystallization were highly prohibited in other procedures, and enhanced nucleation of 4-LD and 4-L polymers compared to the samples without quenching, resulting in formation of a large number of small-sized crystalline assemblies. The results obtained in the present study strongly suggest that the procedure of isothermal crystallization after quenching from the melt is expected to be utilized for screening the crystallizability of SC- and homo-crystallites in various types of block copolymers and blends of PLLA and PDLA and for enhancing nucleation or formation of dense crystalline structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

The data for 4-L11D5 and 4-L4D11 in part a were reproduced from supporting information of Ref. [87] with permission from American Chemical Society

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Slager J, Domb AJ (2003) Biopolymer stereocomplexes. Adv Drug Deliv Rev 55:549–583

    Article  CAS  PubMed  Google Scholar 

  2. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  Google Scholar 

  3. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640

    Article  CAS  Google Scholar 

  4. Auras R, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications (Wiley series on polymer engineering and technology). Wiley, New Jersey

    Google Scholar 

  5. Tsuji H (2016) Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliv Rev 107:97–135

    Article  CAS  PubMed  Google Scholar 

  6. Tsuji H, Hyon SH, Ikada Y (1991) stereocomplex formation between enantiomeric poly(lactic acid)s. 3. calorimetric studies on blend films cast from dilute solution. Macromolecules 24:5651–5656

    Article  CAS  Google Scholar 

  7. Tsuji H, Ikada Y, Hyon SH, Kimura Y, Kitao T (1994) Stereocomplex formation between enantiomeric poly(lactic acid). viii. complex fibers spun from mixed solution of poly(d-lactic acid) and poly(l-lactic acid). J Appl Polym Sci 51:337–344

    Article  CAS  Google Scholar 

  8. Takasaki M, Ito H, Kikutani T (2003) Development of stereocomplex crystal of polylactide in high-speed melt spinning and subsequent drawing and annealing processes. J Macromol Sci Phys 42B(3–4 SPEC.):403–420

    Article  CAS  Google Scholar 

  9. Kang N, Perron M-È, Prud’homme RE, Zhang Y, Gaucher G, Leroux J-C (2005) stereocomplex block copolymer micelles: core–shell nanostructures with enhanced stability. Nano Lett 5:315–319

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Tashiro K, Tsuji H, Domb AJ (2007) Investigation of phase transitional behavior of poly(l-lactide)/poly(d-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40:1049–1054

    Article  CAS  Google Scholar 

  11. Fujita M, Sawayanagi T, Abe H, Tanaka T, Iwata T, Ito K, Fujisawa T, Maeda M (2008) Stereocomplex formation through reorganization of poly(l-lactic acid) and poly(d-lactic acid) crystals. Macromolecules 41:2852–2858

    Article  CAS  Google Scholar 

  12. Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromol 7:3316–3320

    Article  CAS  Google Scholar 

  13. Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee W, Iwata T (2009) In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromol 10:237–242

    Article  CAS  Google Scholar 

  14. Spasova M, Manolova N, Paneva D, Mincheva R, Dubois P, Rashkov I, Maximova V, Danchev D (2010) Polylactide stereocomplex-based electrospun materials possessing surface with antibacterial and hemostatic properties. Biomacromol 11:151–159

    Article  CAS  Google Scholar 

  15. Tsuji H, Tsuruno T (2010) Water vapor permeability of poly(l-lactide)/poly(d-lactide) stereocomplexes. Macromol Mater Eng 295:709–715

    Article  CAS  Google Scholar 

  16. Furuhashi Y, Yoshie N (2012) Stereocomplexation of solvent-cast poly(lactic acid) by addition of non-solvents. Polym Int 6:301–306

    Article  CAS  Google Scholar 

  17. Purnama P, Kim SH (2010) Stereocomplex formation of high-molecular-weight polylactide using supercritical fluid. Macromolecules 43:1137–1142

    Article  CAS  Google Scholar 

  18. Tsuji H, Yamamoto S (2011) Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting. Macromol Mater Eng 296:583–589

    Article  CAS  Google Scholar 

  19. Yang C-F, Huang Y-F, Ruan J, Su A-C (2012) Extensive development of precursory helical pairs prior to formation of stereocomplex crystals in racemic polylactide melt mixture. Macromolecules 45:872–878

    Article  CAS  Google Scholar 

  20. Tsuji H, Bouapao L (2012) Stereocomplex formation between poly(l-lactic acid) and poly(d-lactic acid) with disproportionately low and high molecular weights from the melt. Polym Int 61:442–450

    Article  CAS  Google Scholar 

  21. Akagi T, Fujiwara T, Akashi M (2012) Rapid fabrication of polylactide stereocomplex using layer-by-layer deposition by inkjet printing. Angew Chem Int Ed 51:5493–5496

    Article  CAS  Google Scholar 

  22. Purnama P, Kim SH (2012) Rapid stereocomplex formation of polylactide using supercritical fluid technology. Polym Int 61:939–942

    Article  CAS  Google Scholar 

  23. Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A-C (2012) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromol 13:1212–1222

    Article  CAS  Google Scholar 

  24. Narita J, Katagiri M, Tsuji H (2013) Highly enhanced accelerating effect of melt-recrystallized stereocomplex crystallites on poly(l-lactic acid) crystallization, 2—effects of poly(d-lactic acid) concentration. Macromol Mater Eng 298:270–282

    Article  CAS  Google Scholar 

  25. Li Y, Han C, Zhang X, Dong Q, Dong L (2013) Effects of molten poly(d, l-lactide) on nonisothermal crystallization in stereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta 573:193–199

    Article  CAS  Google Scholar 

  26. Ajiro H, Hsiao Y-J, Tran HT, Fujiwara T, Akashi M (2013) Thermally stabilized poly(lactide)s stereocomplex with bio-based aromatic groups at both initiating and terminating chain ends. Macromolecules 46:5150–5156

    Article  CAS  Google Scholar 

  27. Marubayashi H, Nobuoka T, Iwamoto S, Takemura A, Iwata T (2013) Atomic force microscopy observation of polylactide stereocomplex edge-on crystals in thin films: effects of molecular weight on lamellar curvature. ACS Macro Lett 2:355–360

    Article  CAS  Google Scholar 

  28. Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2013) Synchronous and separate homo-crystallization of enantiomeric poly(l-lactic acid)/poly(d-lactic acid) blends. Polymer 53:747–754

    Article  CAS  Google Scholar 

  29. Na B, Zhu J, Lv R, Ju Y, Tian R, Chen B (2014) Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology. Macromolecules 47:347–352

    Article  CAS  Google Scholar 

  30. Wang X, Prud’homme RE (2014) Dendritic crystallization of poly(l-lactide)/poly(d-lactide) stereocomplexes in ultrathin films. Macromolecules 47:668–676

    Article  CAS  Google Scholar 

  31. Hemmi K, Matsuba G, Tsuji H, Kawai T, Kanaya T, Toyohara K, Oda A, Endou K (2014) Precursors in stereo-complex crystals of poly(l-lactic acid)/poly(d-lactic acid) blends under shear flow. J Appl Cryst 47:14–21

    Article  CAS  Google Scholar 

  32. Song Y, Zhang X, Yin Y, de Vos S, Wang R, Joziasse CAP, Liu G, Wang D (2015) Enhancement of stereocomplex formation in poly(l-lactide)/poly(d-lactide) mixture by shear. Polymer 72:185–192

    Article  CAS  Google Scholar 

  33. Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Makromol Chem 191:481–488

    Article  CAS  Google Scholar 

  34. Spassky N, Wisniewski M, Pluta C, Le Borgne A (1996) Highly stereoelective polymerization of rac-(d, l)-lactide with a chiral Schiff’s base/aluminium alkoxide initiator. Makromol Chem Phys 197:2627–2637

    Article  CAS  Google Scholar 

  35. Spinu M, Jackson C, Keating MY, Gardner KH (1996) Material design in poly(lactic acid) systems: block copolymers, star homo- and copolymers, and stereocomplexes. J Macromol Sci A Pure Appl Chem 33:1497–1530

    Article  Google Scholar 

  36. Sarasua J-R, Prud’homme RE, Wisniewski M, Le Borgne A, Spassky N (1998) Crystallization and melting behavior of polylactides. Macromolecules 31:3895–3905

    Article  CAS  Google Scholar 

  37. Ovitt TM, Coates GW (2002) Stereochemistry of lactide polymerization with chiral catalysts: new opportunities for stereocontrol using polymer exchange mechanisms. J Am Chem Soc 124:1316–1326

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Zhong Z, De Jeu WH, Dijkstra PJ, Feijen J (2004) Crystal structure and morphology of poly(l-lactide-b-d-lactide) diblock copolymers. Macromolecules 37:8641–8646

    Article  CAS  Google Scholar 

  39. Hu J, Tang Z, Qiu X, Pang X, Yang Y, Chen X, Jing X (2005) Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromol 6:2843–2850

    Article  CAS  Google Scholar 

  40. Tang Z, Yang Y, Pang X, Hu J, Chen X, Hu N, Jing X (2005) Controlled and stereospecific polymerization of rac-lactide with a single-site ethyl aluminum and alcohol initiating system. J Appl Polym Sci 98:102–108

    Article  CAS  Google Scholar 

  41. Fukushima K, Furuhashi Y, Sogo K, Miura S, Kimura Y (2005) Stereoblock Poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(l-lactic acid) and poly(d-lactic acid). Macromol Biosci 5:21–29

    Article  CAS  PubMed  Google Scholar 

  42. Fukushima K, Kimura Y (2008) An efficient solid-state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight. J Polym Sci A Polym Chem 46:3714–3722

    Article  CAS  Google Scholar 

  43. Kim SH, Nederberg F, Zhang L, Wade CG, Waymouth RM, Hedrick JL (2008) Hierarchical assembly of nanostructured organosilicate networks via stereocomplexation of block copolymers. Nano Lett 8:294–301

    Article  CAS  PubMed  Google Scholar 

  44. Nederberg F, Appel E, Tan JPK, Sung HK, Fukushima K, Sly J, Miller RD, Waymouth RM, Yang YY, Hedrick JL (2009) Monolayered organosilicate toroids and related structures: a phase diagram for templating from block copolymers. Biomacromol 10:1460–1468

    Article  CAS  Google Scholar 

  45. Hirata M, Kobayashi K, Kimura Y (2010) Synthesis and properties of high-molecular-weight stereo di-block polylactides with nonequivalent d/l ratios. J Polym Sci A Polym Chem 48:794–801

    Article  CAS  Google Scholar 

  46. Sugai N, Yamamoto T, Tezuka Y (2012) Synthesis of orientationally isomeric cyclic stereoblock polylactides with head-to-head and head-to-tail linkages of the enantiomeric segments. ACS Macro Lett 1:902–906

    Article  CAS  Google Scholar 

  47. Tsuji H, Wada T, Sakamoto Y, Sugiura Y (2010) Stereocomplex crystallization and spherulite growth behavior of poly(l-lactide)-b-poly(d-lactide) stereodiblock copolymers. Polymer 51:4937–4947

    Article  CAS  Google Scholar 

  48. Masutani K, Lee CW, Kimura Y (2012) Synthesis and thermomechanical properties of stereo triblock polylactides with nonequivalent block compositions. Macromol Chem Phys 213:695–704

    Article  CAS  Google Scholar 

  49. Masutani K, Lee CW, Kimura Y (2012) Synthesis of stereo multiblock polylactides by dual terminal couplings of poly-L-lactide and poly-D-lactide prepolymers: a new route to high-performance polylactides. Polymer 53:6053–6062

    Article  CAS  Google Scholar 

  50. Rahaman MH, Tsuji H (2012) Synthesis and characterization of stereo multiblock poly(lactic acid)s with different block lengths by melt polycondensation of poly(l-lactic acid)/poly(d-lactic acid) blends. Macromol React Eng 6:446–457

    Article  CAS  Google Scholar 

  51. Rahaman MH, Tsuji H (2013) Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length. J Appl Polym Sci 129:2502–2517

    Article  CAS  Google Scholar 

  52. Masutani K, Lee CW, Kimura Y (2013) Synthesis and properties of stereo di- and tri-block polylactides of different block compositions by terminal diels-alder coupling of poly-l-lactide and poly-d-lactide prepolymers. Polym J 45:427–435

    Article  CAS  Google Scholar 

  53. Rahaman MH, Tsuji H (2013) Hydrolytic degradation behavior of stereo multiblock and diblock poly(lactic acid)s: effects of block lengths. Polym Degrad Stab 98:709–719

    Article  CAS  Google Scholar 

  54. Tsuji H, Tajima T (2014) Relatively short poly(d-lactide) segments as intra-crystallization-accelerating moieties in stereo diblock poly(lactide)s. Macromol Mater Eng 299:430–435

    Article  CAS  Google Scholar 

  55. Tsuji H, Tajima T (2014) Crystallization behavior of stereo diblock poly(lactide)s with relatively short poly(d-lactide) segment from partially melted state. Macromol Mater Eng 299:1089–1105

    CAS  Google Scholar 

  56. Sugai N, Asai S, Tezuka Y, Yamamoto T (2015) Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym Chem 6:3591–3600

    Article  CAS  Google Scholar 

  57. Tsuji H, Tajima T (2015) Non-Isothermal crystallization behavior of stereo diblock polylactides with relatively short poly(d-lactide) segments from the melt. Polym Int 64:54–65

    Article  CAS  Google Scholar 

  58. Tsuji H, Noda S, Kimura T, Sobue T, Arakawa Y (2017) Configurational molecular glue: one optically active polymer attracts two oppositely configured optically active polymers. Sci Rep 7:45170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang F, Wang H-W, Tominaga K, Hayashi M, Lee S, Nishino T (2016) Elucidation of chiral symmetry breaking in a racemic polymer system with terahertz vibrational spectroscopy and crystal orbital density functional theory. J Phys Chem Lett 7:4671–4676

    Article  CAS  PubMed  Google Scholar 

  60. Tashiro K, Wang H, Kouno N, Koshobu J, Watanabe K (2017) Confirmation of the x-ray-analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement. Macromolecules 50:8066–8071

    Article  CAS  Google Scholar 

  61. Tashiro K, Kouno N, Wang H, Tsuji H (2017) Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by x-ray diffraction analysis. Macromolecules 50:8048–8065

    Article  CAS  Google Scholar 

  62. Inkinen S, Stolt M, Södergård A (2011) Effect of blending ratio and oligomer structure on the thermal transitions of stereocomplexes consisting of a d-lactic acid oligomer and poly(l-lactide). Polym Adv Tech 22:1658–1664

    Article  CAS  Google Scholar 

  63. Hiemstra C, Zhong Z, Dijkstra PJ, Feijen J (2005) Stereocomplex mediated gelation of PEG-(PLA)2 and PEG-(PLA)8 block copolymers. Macromol Symp 224:119–131

    Article  CAS  Google Scholar 

  64. Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713

    Article  CAS  Google Scholar 

  65. Nagahama K, Fujiura K, Enami S, Ouchi T, Ohya Y (2008) Irreversible temperature-responsive formation of high-strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8-arm PEG and PLLA or PDLA. J Polym Sci A Polym Chem 46:6317–6332

    Article  CAS  Google Scholar 

  66. Nagahama K, Nishimura Y, Ohya Y, Ouchi T (2007) Impacts of stereoregularity and stereocomplex formation on physicochemical, protein adsorption and cell adhesion behaviors of star-shaped 8-arms poly(ethylene glycol)–poly(lactide) block copolymer films. Polymer 48:2649–2658

    Article  CAS  Google Scholar 

  67. Łukaszczyk J, Jelonek P, Trzebicka B, Domb AJ (2010) Stereocomplexes formation from enantiomeric star-shaped block copolymers of ε-caprolactone and lactide. E-Polymers 10:073

    Article  Google Scholar 

  68. Tan BH, Hussain H, Lin TT, Chua YC, Leong YW, Tjiu WW, Wong PK, He CB (2011) Stable dispersions of hybrid nanoparticles induced by stereocomplexation between enantiomeric poly(lactide) star polymers. Langmuir 27:10538–10547

    Article  CAS  PubMed  Google Scholar 

  69. Michell RM, Müller AJ, Spasova M, Dubois P, Burattini S, Greenland BW, Hamley IW, Hermida-Merino D, Cheval N, Fahmi A (2011) Crystallization and stereocomplexation behavior of poly(d- and l-lactide)-b-poly(n, n-dimethylamino-2-ethyl methacrylate) block copolymers. J Polym Sci B Polym Phys 49:1397–1409

    Article  CAS  Google Scholar 

  70. Purnama P, Jung Y, Kim SH (2013) Melt stability of 8-arms star-shaped stereocomplex polylactide with three-dimensional core structures. Polym Degrad Stab 98:1097–1101

    Article  CAS  Google Scholar 

  71. Sakamoto Y, Tsuji H (2013) Stereocomplex crystallization behavior and physical properties of linear 1-arm, 2-arm, and branched 4-arm poly(l-lactide)/poly(d-lactide) blends: effects of chain directional change and branching. Macromol Chem Phys 214:776–786

    Article  CAS  Google Scholar 

  72. Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A-C (2012) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromol 13:1212–1222

    Article  CAS  Google Scholar 

  73. Shao J, Sun J, Bian X, Cui Y, Li G, Xuesi C (2012) Investigation of poly(lactide) stereocomplexes: 3-armed poly(l-lactide) blended with linear and 3-armed enantiomers. J Phys Chem B 116:9983–9991

    Article  CAS  PubMed  Google Scholar 

  74. Geschwind J, Rathi S, Tonhauser C, Schömer M, Hsu SL, Coughlin EB, Frey H (2013) Stereocomplex formation in polylactide multiarm stars and comb copolymers with linear and hyperbranched multifunctional PEG. Macromol Chem Phys 214:1434–1444

    Article  CAS  Google Scholar 

  75. Brzeziński M, Biedroń T, Tracz A, Kubisa P, Biela T (2014) Spontaneous formation of colloidal crystals of PLA stereocomplex microspheres and their hierarchical structure. Macromol Chem Phys 215:27–31

    Article  CAS  Google Scholar 

  76. Nouri S, Dubois C, Lafleur PG (2015) Homocrystal and stereocomplex formation behavior of polylactides with different branched structures. Polymer 67:227–239

    Article  CAS  Google Scholar 

  77. Nouri S, Dubois C, Lafleur PG (2015) Effect of chemical and physical branching on rheological behavior of polylactide. J Rheol 59:1045–1063

    Article  CAS  Google Scholar 

  78. Gardella L, Basso A, Prato M, Monticelli O (2015) On stereocomplexed polylactide materials as support for PAMAM dendrimers: synthesis and properties. RSC Adv 5:46774–46784

    Article  CAS  Google Scholar 

  79. Cheerarot O, Baimark Y (2015) Thermal and mechanical properties of biodegradable star-shaped/linear polylactide stereocomplexes. J Chem 2015:206123

    Article  CAS  Google Scholar 

  80. Tsuji H, Ogawa M, Arakawa Y (2016) Homo- and stereocomplex crystallization of star-shaped four-armed stereo diblock copolymers of crystalline and amorphous poly(lactide)s: effects of incorporation and position of amorphous blocks. J Phys Chem B 120:11052–11063

    Article  CAS  PubMed  Google Scholar 

  81. Nederberg F, Appel E, Tan JPK, Sung HK, Fukushima K, Sly J, Miller RD, Waymouth RM, Yang YY, Hedrick JL (2009) Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromol 10:1460–1468

    Article  CAS  Google Scholar 

  82. Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arms. Macromolecules 46:8509–8518

    Article  CAS  Google Scholar 

  83. Shao J, Tang Z, Sun J, Li G, Chen X (2014) Linear and four-armed poly(l-lactide)-block-poly(d-lactide) copolymers and their stereocomplexation with poly(lactide)s. J Polym Sci B Polym Phys 52:1560–1567

    Article  CAS  Google Scholar 

  84. Ma Y, Li W, Li L, Fan Z, Li S (2014) Stereocomplexed three-arm PPO–PDLA–PLLA copolymers: synthesis via an end-functionalized initiator. Eur Polym J 55:27–34

    Article  CAS  Google Scholar 

  85. Tsuji H, Yamashita Y (2015) Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d-lactide) and poly(l-lactide) cores. Polymer 55:6444–6450

    Article  CAS  Google Scholar 

  86. Tsuji H, Ozawa R, Matsumura N (2016) Effect of incorporated star-shaped four-armed stereo diblock poly(lactide) on the crystallization behavior of linear one-armed poly(l-lactide) or poly(d-lactide). Polym J 48:209–213

    Article  CAS  Google Scholar 

  87. Tsuji H, Matsumura N, Arakawa Y (2016) Stereocomplex crystallization and homocrystallization of star-shaped four-armed stereo diblock poly(lactide)s with different l-lactyl unit contents: isothermal crystallization from the melt. J Phys Chem B 120:1183–1193

    Article  CAS  PubMed  Google Scholar 

  88. Tsuji H, Matsumura N (2016) Stereocomplex crystallization of star-shaped four-armed stereo diblock poly(lactide)s with different molecular weights: isothermal crystallization from the melt. Macromol Chem Phys 217:1547–1557

    Article  CAS  Google Scholar 

  89. Tsuji H, Matsumura N, Arakawa Y (2016) Stereocomplex crystallization and homo-crystallization of star-shaped four-armed stereo diblock poly(lactide)s during precipitation and non-isothermal crystallization. Polym J 48:1087–1093

    Article  CAS  Google Scholar 

  90. Tsuji H, Ogawa M, Arakawa Y (2017) Stereocomplex crystallization of linear two-armed stereo diblock copolymers: effects of chain directional change, coinitiator moiety, and terminal groups. J Phys Chem B 121:2695–2702

    Article  CAS  PubMed  Google Scholar 

  91. Tsuji H, Ozawa R, Arakawa T (2017) Stereocomplex crystallization of star-shaped four-armed stereo diblock poly(lactide) from the melt: effects of incorporated linear one-armed poly(l-lactide) or poly(d-lactide). J Phys Chem B 121:9936–9946

    Article  CAS  PubMed  Google Scholar 

  92. Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 36:2709–2716

    Article  CAS  Google Scholar 

  93. He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of poly(l-lactide)/poly(d-lactide) stereocomplex depending on initial melt states. Polymer 49:5670–5675

    Article  CAS  Google Scholar 

  94. Bao R-Y, Yang W, Jiang W-R, Liu Z-Y, Xie B-H, Yang M-B (2013) Polymorphism of racemic poly(l-lactide)/poly(d-lactide) blend: effect of melt and cold crystallization. J Phys Chem B 117:3667–3674

    Article  CAS  PubMed  Google Scholar 

  95. Na B, Zhu J, Lv R, Ju Y, Tian R, Chen B (2014) Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology. Macromolecules 47:347–352

    Article  CAS  Google Scholar 

  96. Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules 40:6898–6905

    Article  CAS  Google Scholar 

  97. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Crystallization and melting behavior of poly (l-lactic acid). Macromolecules 40:9463–9469

    Article  CAS  Google Scholar 

  98. Tsuji H, Tashiro K, Bouapao L, Hanesaka M (2012) separate crystallization and cocrystallization of poly(l-lactide) in the presence of l-lactide-based copolymers with low crystallizability, poly(l-lactide-co-glycolide) and poly(l-lactide-co-d-lactide). Macromol Chem Phys 213:2099–2112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number 16K05912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideto Tsuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, H., Arakawa, Y. & Matsumura, N. Screening of crystalline species and enhanced nucleation of enantiomeric poly(lactide) systems by melt-quenching. Polym. Bull. 76, 1199–1216 (2019). https://doi.org/10.1007/s00289-018-2436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2436-5

Keywords

Navigation