Skip to main content

Advertisement

Log in

The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera M, Casanueva M (2005) Araneomorphae chilenas: estado actual del conocimiento y clave para las familias más comunes (Aracnida: Araneae). Gayana 69(2):201–224

    Google Scholar 

  • Agusto P, Mattoni CI, Pizarro-Araya J, Cepeda-Pizarro J, López-Cortés F (2006) Communities of scorpions (Arachnida: Scorpiones) of the transitional coastal desert of Chile. Rev Chil Hist Nat 79:407–421

    Article  Google Scholar 

  • Almeida-Neto M, Guimarães P, Guimarães Jr PR, Loyola RD, Ulrich W (2008) A consistent metric for nestedness analysis in ecological systems: reconciling concept and quanti-fication. Oikos 117:1227–1239

    Article  Google Scholar 

  • Anderson MJ (2001a) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER_E, Plymouth

    Google Scholar 

  • Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. Aust NZ J Stat 45:301–318

    Article  Google Scholar 

  • Ascher D, Dubois PF, Hinsen K, Hugunin J, Oliphant T (2001) Numerical Python. Lawrence Livermore National Laboratory, Livermore, California, USA. http://www.pfduboiscom/numpy/

  • Callison J, Brotherson JD, Bowns JE (1985) The effects of fire on the blackbrush [Coleogyne ramosissima] community of Southwestern Utah. J Range Manage 38:535–538

    Article  Google Scholar 

  • Cepeda-Pizarro J, Pizarro-Araya J, Vásquez H (2005b) Variación en la abundancia de Artropoda en un transecto latitudinal del desierto costero transicional de Chile, con énfasis en los tenebriónidos epígeos. Rev Chil Hist Nat 78:651–663

    Google Scholar 

  • Chiabrando R, Fabrizio E, Garnero G (2009) The territorial and landscape impacts of photovoltaic systems: definition of impacts and assessment of the glare risk. Renew Sust Energ Rev 13:2441–2451

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of change in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol-Prog Ser 92:205–219

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual. Tutorial PRIMER-E. Ltd, Plymouth

    Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69

    Article  Google Scholar 

  • Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80

    Article  Google Scholar 

  • Cobbold SM, Supp SR (2012) Patch shape alters spider community structure: links between microhabitat choice and sensitivity to increased edge habitat. J Insect Conserv 16:581–589

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forest and coral reefs. Science 199:1302–1310

    Article  CAS  Google Scholar 

  • Corral N, Anrique N, Fernandes D, Parrado C, Cáceres G (2012) Power placement and LEC evaluation to install CSP plants in northern Chile. Renew Sust Energ Rev 16:6678–6685

    Article  Google Scholar 

  • De Rosario-Martinez H (2015) phia: Post-Hoc Interaction Analysis R package, version 02-1 https://CRANR-projectorg/package=phia

  • del Sol F, Sauma E (2013) Economic impacts of installing solar power plants in northern Chile. Renew Sust Energ Rev 19:489–498

    Article  Google Scholar 

  • Escobar R, Cortés C, Pino A, Bueno Pereira E, Ramos Martins F, Cardemil JM (2014) Solar energy resource assessment in Chile: Satellite estimation and ground station measurements. Renew Energ 71:324–332

    Article  Google Scholar 

  • Ferrada P, Araya F, Marzo A, Fuentealba E (2015) Performance analysis of photovoltaic systems of two different technologies in a coastal desert climate zone of Chile. Sol Energy 114:356–363

    Article  Google Scholar 

  • Ferrú M, Elgueta M (2011) Lista de Coleópteros (Insecta: Coleoptera) de Las Regiones de Arica y de Tarapacá, Chile. Bol. Mus Nac Hist Nat 60:9–61

    Google Scholar 

  • Fthenakis V (2009) Sustainability of photovoltaics: the case for thin-film solar cells. Renew Sust Energ Rev 13:2746–2750

    Article  CAS  Google Scholar 

  • Gantz A, Rau J, Couve E (2009) Ensambles de Aves en El Desierto Atacama, Norte Grande de Chile. Gayana 73(2):172–179

    Google Scholar 

  • Guzmán-Sandoval J, Sielfeld W, Ferrú M (2007) Dieta de Lycalopex culpaeus (Mammalia: Canidae) El Extramo Norte de Chile (Región de Tarapacá). Gayana 71(1):1–7

    Google Scholar 

  • Hernandez RR, Easter SB, Murphy-Mariscal ML, Maestre FT, Tavassoli M, Allen EB, Barrows CW, Belnap J, Ochoa-Hueso R, Ravi S, Allen MF (2014) Environmental impacts of utility-scale solar energy. Renew Sust Energ Rev 29:766–779

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hughes CE, Eastwood RJ (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Nat Acad Sci 103:10334–10339

    Article  CAS  Google Scholar 

  • Jerez V (2000) Diversidad y patrones de distribución geográfica de insectos coleópteros en ecosistemas desérticos de la región de Antofagasta, Chile. Rev Chil Hist Nat 73:79–92

    Article  Google Scholar 

  • Jiménez-Estévez G, Palma-Behnke R, Latorre R, Morán L (2015) Heat and dust - The solar energy challenge in Chile. IEEE Power Energy M 13:71–77

  • Johansen JRSt, Clair LL (1986) Cryptogamic soil crusts: recovery from grazing near camp Floyd State Park, Utah, USA. Great Basin Nat 46:632–640

    Google Scholar 

  • Kaygusuz K (2009) Environmental impacts of the solar energy systems. Energ Source Part A 31:1376–1386

    Article  CAS  Google Scholar 

  • Kendall M (1938) A new measure of rank correlation. Biometrika 30(1–2):81–89. doi:10.1093/biomet/30.1-2.81

    Article  Google Scholar 

  • Krauter S (2004) Increased electrical yield via water flow over the front of photovoltaic panels. Sol. Energ. Mat Sol Cells 82:131–137

    Article  CAS  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling. Psychometrika 29:1–27

    Article  Google Scholar 

  • Lovich J, Ennen JR (2011) Wildlife conservation and solar energy development in the desert Southwest, United States. BioScience 61:982–992

    Article  Google Scholar 

  • Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. 1st edn, Editorial Universitaria, Santiago de Chile

  • Ministry of Energy, Chile (2015) 2015 Energy statistical year book Chile. https://www.cne.cl/wp-content/uploads/2016/07/AnuarioCNE2015_vFinal-Ingles.pdf. Accessed April 2017

  • Moreira-Muñoz A (2011) Plant geography of Chile, 13 current climate and vegetation. Springer, Dordrecht, Heidelberg, London, New York, p 33–34

    Book  Google Scholar 

  • Ortega A, Escobar R, Colle S, Lunade AS (2010) The state of solar energy resource assessment in Chile. Renew Energ 35:2514–2524

    Article  Google Scholar 

  • Pennington RT, Lavin M, Särkinen T, Lewis GP, Klitgaard BB, Hughes CE (2010) Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc Natl Acad Sci USA 107:13783–13787

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, and R Core Team (2015) nlme: Linear and Nonlinear Mixed Effects Models R package. version 31-122. URL: http://CRANR-projectorg/package=nlme

  • Pizarro-Araya J, Ceppeda-Pizarro J, Flores GF (2008) Diversidad Taxonómica de los Artrópodos Epígeos de la Región de Atacama (Chile). In: Squeo FA, Arancio G, Gutiérrez JR (Eds.) Estado del Conocimiento Libro Rojo de la Nativa y de los sitios Prioritarios para su Conservación: Región de Atacama. Ediciones Universidad de La Serena, La Serena, p 267–284. 14

    Google Scholar 

  • Pizarro-Araya J, Jerez V (2004) Distribución geográfica del género Gyriosomus Guérin-Méneville, 1834 (Coleoptera: Tenebrionidae): una aproximación biogeográfica. Rev Chil Hist Nat 77:491–500

    Article  Google Scholar 

  • Roig-Juñet S, Flores GE (2001) Geográfica de las áreas áridas de América del Sur Austral. Teorías, conceptos, métodos y aplicaciones. In: Llorente-Busquets J, Morrone JJ (eds) Introducción a la biogeografía en Latinoamérica Historia. Las prensas de Ciencias, Facultad de Ciencias. UNAM, México, p 257–266

    Google Scholar 

  • Rundel PW, Dillon MO, Palma B, Mooney H, Gulmon SL, Ehleringer JR (1991) The Phytogeography and ecology of the costal Atacama and Peruvian deserts. Aliso 13:1–50

    Article  Google Scholar 

  • Salazar G, Checura Diaz MS, Denegri MJ, Tiba C (2015) Identification of potential areas to achieve stable energy production using the SWERA database: A case study of northern Chile. Renew Energ 77:208–216

    Article  Google Scholar 

  • Samways MJ (2005) Insect diversity conservation. In: Del Claro K, Olivera PS, Rico-Gray V (eds) Tropical biology and conservation management. Cambridge University Press, New York, NY, p 342. Vol. VII

    Google Scholar 

  • Snelling RR, Hunt JH (1975) The ants of Chile (Hymenoptera: Formicidae). Rev Chil Entomol 9:63–129

    Google Scholar 

  • Solar Pack (2013) Descripción General, in: Memoria Técnica V05, Plantas solares fotovoltaicas conectadas a red, Pozo Almonte Solar 3-16MW Annex 5.05, Technical Specifications, p 3

  • Stoms D, Dashiell SL, Davis FW (2013) Siting solar energy development to minimize biological impacts. Renew Energ 57:289–298

    Article  Google Scholar 

  • Taucare-Ríos A, Sielfeld W (2013) Arañas (Arachnida: Araneae) del extremo norte de Chile. Bol Mus Nac Hist Nat 62:7–27

    Google Scholar 

  • Tokman M (2008) Política energética, nuevos lineamientos transformando la crisis energética en una oportunidad. National Energy Commission, Government of Chile, Santiago de Chile

  • Toro-Núñez O, Al-Shehbaz IA, Mort ME (2015) Phylogenetic study with nuclear and chloroplast data and ecological niche reveals Atacama (Brassicaceae), a new monotypic genus endemic from the Andes of the Atacama Desert, Chile. Plant Syst Evol 301:1377–1396

    Article  Google Scholar 

  • Tracol Y, Gutiérrez JR, Squeo FA (2011) Plant Area Index and microclimate underneath shrub species from a Chilean semiarid community. J Arid Environ 75:1–6

    Article  Google Scholar 

  • Tsoutsos T, Frantzeskakib N, Gekasb V (2005) Environmental impacts from the solar energy technologies. Energy Policy 33:289–296

    Article  Google Scholar 

  • Turney D, Fthenakis V (2011) Environmental impacts from the installation and operation of large-scale solar power plants. Renew Sust Energ Rev 15:3261–3270

    Article  Google Scholar 

  • Ulrich W, Gotelli NJ (2013) Pattern detection in null model analysis. Oikos 122:2–18

    Article  Google Scholar 

  • Vidal MA, Pizarro-Araya J, Jerez V, Ortiz JC (2011) Daily activity and thermoregulation in predator-prey interaction during the Flowering Desert in Chile. J Arid Environ 75:802–808

    Article  Google Scholar 

  • Whitford WG (1991) Subterranean termites and long-term productivity of desert rangelands. Sociobiology 19:235–243

    Google Scholar 

  • Whitford WG (2000) Keystone arthropods as webmasters in desert ecosystem. In: Coleman DC, Hendrix PF (eds) Invertebrates as webmaster in ecosystems. CAB International, London, p 5–41

    Google Scholar 

  • Wise DH (2006) Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu Rev Entomol 51:441–465

    Article  CAS  Google Scholar 

  • Wu Z, Anping H, Chun C, Xiang H, Duoqi S, Zhifeng W (2014) Environmental impacts of large-scale CSP plants in North-Western China. Environ Sci Processes Impacts 16:2432

    Article  CAS  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science+Business Media, New York

Download references

Acknowledgements

The authors would like to thank Solar Pack and Subsole for their collaboration and support in this study. Fundación Chile and Eduardo Soto Sepúlveda (Phineal), who helped with ideas and logistic support, are also gratefully acknowledged. Funding for A. Suuronen was supplied by the Academy of Finland [grant no 269468].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Suuronen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suuronen, A., Muñoz-Escobar, C., Lensu, A. et al. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments. Environmental Management 60, 630–642 (2017). https://doi.org/10.1007/s00267-017-0906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0906-4

Keywords

Navigation