Skip to main content

Advertisement

Log in

P15 peptide stimulates chondrogenic commitment and endochondral ossification

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The synthetic 15 amino acid biomimetic peptide sequence (P15) derived from a region of the alpha (α)-1 chain of collagen I, has been shown to promote α2 integrin activation and enhance intramembranous ossification. In this study, we ask if the P15 peptide also enhances bone formation through endochondral ossification, and determine if direct binding of α2 integrin with P15 mediates integrin activation.

Methods

Mesenchymal cells (C3H10T1/2) were cultured in chondrogenic media and the expression of chondrogenic markers and integrin activation was determined by Western blot and fluorescent immunohistochemistry. A biosensor assay was used to determine if binding occurred between P15 and α2 β1 integrin. Finally, an in vivo model of endochondral ossification was used to determine the effect of P15 on bone formation.

Results

In the presence of P15, chondrogenesis and activation of α5 integrin were enhanced, as observed by both Western blot analysis and immunoflourescent staining. A biosensor assay investigating the specificity of the interaction between P15 with α2β1 integrin determined direct binding does not occur. When P15 was added to Matrigel implanted in a murine endochondral ossification model, in the presence of bone morphogenic protein-2 (BMP-2), a significant increase in chondrocyte differentiation and mineralization was observed.

Conclusion

P15 does not directly activate integrins by binding, but does upregulate integrin signaling to enhance differentiation of both osteoblasts and chondrocytes to increase both intramembranous and endochondral bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deyo RA, Gray DT, Kreuter W, Mirza S, Martin BI (2005) United States trends in lumbar fusion surgery for degenerative conditions. Spine 30(12):1441–1445, discussion 1446-1447

    Article  PubMed  Google Scholar 

  2. Siu RK, Lu SS, Li W, Whang J, McNeill G, Zhang X, Wu BM, Turner AS, Seim HB 3rd, Hoang P, Wang JC, Gertzman AA, Ting K, Soo C (2011) Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A 17(7-8):1123–1135. doi:10.1089/ten.TEA.2010.0486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reid JJ, Johnson JS, Wang JC (2011) Challenges to bone formation in spinal fusion. J Biomech 44(2):213–220. doi:10.1016/j.jbiomech.2010.10.021

    Article  PubMed  Google Scholar 

  4. Nerubay J, Marganit B, Bubis JJ, Tadmor A, Katznelson A (1986) Stimulation of bone formation by electrical current on spinal fusion. Spine 11(2):167–169

    Article  CAS  PubMed  Google Scholar 

  5. Chang CF, Lee MW, Kuo PY, Wang YJ, Tu YH, Hung SC (2007) Three-dimensional collagen fiber remodeling by mesenchymal stem cells requires the integrin-matrix interaction. J Biomed Mater Res A 80(2):466–474. doi:10.1002/jbm.a.30963

    Article  PubMed  Google Scholar 

  6. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D (2009) Transcriptional regulation of osteoblasts. Cells Tissues Organs 189(1-4):144–152. doi:10.1159/000151747

    Article  CAS  PubMed  Google Scholar 

  7. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20(1):33–43. doi:10.1016/j.tig.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  8. Liu Q, Limthongkul W, Sidhu G, Zhang J, Vaccaro A, Shenck R, Hickok N, Shapiro I, Freeman T (2012) Covalent attachment of P15 peptide to titanium surfaces enhances cell attachment, spreading, and osteogenic gene expression. J Orthop Res Off Publ Orthop Res Soc 30(10):1626–1633. doi:10.1002/jor.22116

    Article  CAS  Google Scholar 

  9. Gomar F, Orozco R, Villar JL, Arrizabalaga F (2007) P-15 small peptide bone graft substitute in the treatment of non-unions and delayed union. A pilot clinical trial. Int Orthop 31(1):93–99. doi:10.1007/s00264-006-0087-x

    Article  PubMed  Google Scholar 

  10. Yang XB, Bhatnagar RS, Li S, Oreffo RO (2004) Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 10(7-8):1148–1159. doi:10.1089/ten.2004.10.1148

    Article  CAS  PubMed  Google Scholar 

  11. Lee JY, Choi YS, Lee SJ, Chung CP, Park YJ (2011) Bioactive peptide-modified biomaterials for bone regeneration. Curr Pharm Des 17(25):2663–2676

    Article  CAS  PubMed  Google Scholar 

  12. Thorwarth M, Schultze-Mosgau S, Wehrhan F, Kessler P, Srour S, Wiltfang J, Andreas Schlegel K (2005) Bioactivation of an anorganic bone matrix by P-15 peptide for the promotion of early bone formation. Biomaterials 26(28):5648–5657. doi:10.1016/j.biomaterials.2005.02.023

    Article  CAS  PubMed  Google Scholar 

  13. Bhatnagar RS, Qian JJ, Wedrychowska A, Sadeghi M, Wu YM, Smith N (1999) Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. Tissue Eng 5(1):53–65

    Article  CAS  PubMed  Google Scholar 

  14. Mobbs RJ, Maharaj M, Rao PJ (2014) Clinical outcomes and fusion rates following anterior lumbar interbody fusion with bone graft substitute i-FACTOR, an anorganic bone matrix/P-15 composite. J Neurosurg Spine 21(6):867–876. doi:10.3171/2014.9.SPINE131151

    Article  PubMed  Google Scholar 

  15. Garrison KR, Donell S, Ryder J, Shemilt I, Mugford M, Harvey I, Song F (2007) Clinical effectiveness and cost-effectiveness of bone morphogenetic proteins in the non-healing of fractures and spinal fusion: a systematic review. Health Technol Assess 11(30):1–150, iii-iv

    Article  CAS  PubMed  Google Scholar 

  16. Gibson S, McLeod I, Wardlaw D, Urbaniak S (2002) Allograft versus autograft in instrumented posterolateral lumbar spinal fusion: a randomized control trial. Spine 27(15):1599–1603

    Article  PubMed  Google Scholar 

  17. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res ((329):300-309

  18. Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20(9):1055–1060

    Article  CAS  PubMed  Google Scholar 

  19. Floyd T, Ohnmeiss D (2000) A meta-analysis of autograft versus allograft in anterior cervical fusion. Eur Spine J 9(5):398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cahill KS, Chi JH, Day A, Claus EB (2009) Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 302(1):58–66. doi:10.1001/jama.2009.956

    Article  CAS  PubMed  Google Scholar 

  21. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491. doi:10.1016/j.spinee.2011.04.023

    Article  PubMed  Google Scholar 

  22. Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK, Bellis SL (2009) The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 30(10):1898–1909. doi:10.1016/j.biomaterials.2008.12.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li X, Contreras-Garcia A, LoVetri K, Yakandawala N, Wertheimer MR, De Crescenzo G, Hoemann CD (2015) Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces. J Biomed Mater Res A. doi:10.1002/jbm.a.35511

    PubMed Central  Google Scholar 

  24. Kiely PD, Brecevich AT, Taher F, Nguyen JT, Cammisa FP, Abjornson C (2014) Evaluation of a new formulation of demineralized bone matrix putty in a rabbit posterolateral spinal fusion model. Spine J 14(9):2155–2163. doi:10.1016/j.spinee.2014.01.053

    Article  PubMed  Google Scholar 

  25. Eaton GJ, Zhang QS, Diallo C, Matsuzawa A, Ichijo H, Steinbeck MJ, Freeman TA (2014) Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival. Cell Death Dis 5:e1522. doi:10.1038/cddis.2014.480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Myszka DG, Arulanantham PR, Sana T, Wu Z, Morton TA, Ciardelli TL (1996) Kinetic analysis of ligand binding to interleukin-2 receptor complexes created on an optical biosensor surface. Protein Sci 5(12):2468–2478. doi:10.1002/pro.5560051209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanks T, Atkinson BL (2004) Comparison of cell viability on anorganic bone matrix with or without P-15 cell binding peptide. Biomaterials 25(19):4831–4836. doi:10.1016/j.biomaterials.2003.12.007

    Article  CAS  PubMed  Google Scholar 

  28. Kubler A, Neugebauer J, Oh JH, Scheer M, Zoller JE (2004) Growth and proliferation of human osteoblasts on different bone graft substitutes: an in vitro study. Implant Dent 13(2):171–179

    Article  PubMed  Google Scholar 

  29. Fukumoto T, Sanyal A, Fitzsimmons JS, O’Driscoll SW (2002) Expression of beta1 integrins during periosteal chondrogenesis. Osteoarthritis Cartilage 10(2):135–144. doi:10.1053/joca.2001.0490

    Article  CAS  PubMed  Google Scholar 

  30. Kundu AK, Khatiwala CB, Putnam AJ (2009) Extracellular matrix remodeling, integrin expression, and downstream signaling pathways influence the osteogenic differentiation of mesenchymal stem cells on poly(lactide-co-glycolide) substrates. Tissue Eng Part A 15(2):273–283. doi:10.1089/ten.tea.2008.0055

    Article  CAS  PubMed  Google Scholar 

  31. Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26(4):730–738. doi:10.1002/jbmr.278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Irving Shapiro for his valuable discussions and manuscript revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa A. Freeman.

Ethics declarations

Conflicts of interest

No conflicts of interest exist for Jun Zhang, Peter Eisenhauer, Ozcan Kaya, Carol Diallo, Andrzej Fertala, or Theresa A Freeman.

Funding

This work was funded by Cerapedics, Inc.

Animal rights

All animal procedures were conducted under the approval of the Thomas Jefferson University Institutional Animal Care and Use Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Eisenhauer, P., Kaya, O. et al. P15 peptide stimulates chondrogenic commitment and endochondral ossification. International Orthopaedics (SICOT) 41, 1413–1422 (2017). https://doi.org/10.1007/s00264-017-3464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-017-3464-8

Keywords

Navigation