Skip to main content
Log in

Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

We evaluated the parameters of Ca2+-induced mitochondrial permeability transition (MPT) pore formations, Ca2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca2+ concentration, we determined the order of interaction of Ca2+ ions with the mitochondrial sites, n = 3, and the apparent Kd = 60 ± 12 µM. We also found the apparent Michaelis–Menten constant, Km, for Ca2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca2+ concentrations, we calculated the activation energy of the MPT process. ΔEa was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30–34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca2+-dependent mitochondrial depolarization and Mg2+ ions attenuated the potential dissipation. tBHP (10–150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca2+. The apparent Km of tBHP interaction with mitochondria in the swelling reaction was found to be Km = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca2+-induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca2+-induced MPT onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MPT:

Mitochondrial permeability transition

CypD:

Cyclophilin D

CsA:

Cyclosporin A

ANT:

Adenine nucleotide (ADP/ATP) transporter

VDAC:

Voltage-dependent anion channel

ROS:

Reactive oxygen species

tBHP:

Tert-butyl hydroperoxide

HOCl:

Hypochlorous acid

FCCP:

Carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone

MCU:

Mitochondrial Ca2+ uniporter

References

  • Akerman KEO, Wikström MKF (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 6:191–197

    Article  Google Scholar 

  • Alaviana KN, Beutner G, Lazrove E, Sacchetti S, Park H-A, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA Jr, Jonas EA (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Nat Acad Sci USA 111: 10580–10585.

    Article  Google Scholar 

  • Armstrong JS, Yang H, Duan W, Whiteman M (2004) Cytochrome bc1 regulates the mitochondrial permeability transition by two distinct pathways. J Biol Chem 279:50420–50428

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranov SV, Stavrovskaya IG, Brown AM, Tyryshkin AM, Kristal BS (2008) Kinetic model for Ca2+-induced permeability transition in energized liver mitochondria discriminates between inhibitor mechanisms. J Biol Chem 283:665–676

    Article  CAS  PubMed  Google Scholar 

  • Bartolomé FA, Abramov Y (2015) Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol Biol 1264:263–270

    Article  PubMed  Google Scholar 

  • Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279:17197–17204

    Article  CAS  PubMed  Google Scholar 

  • Battaglia V, Grancara S, Satriano J, Saccoccio S, Agostinelli E, Toninello A (2010) Agmatine prevents the Ca(2+)-dependent induction of permeability transition in rat brain mitochondria. Amino Acids 38:431–437

    Article  CAS  PubMed  Google Scholar 

  • Bellomo G, Jewell SA, Thor H, Orrenius S (1982) Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proc Natl Acad Sci USA 79:6842–6846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P (1992) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 267:8834–8839

    CAS  PubMed  Google Scholar 

  • Bernardi P (2013) The mitochondrial permeability transition: a mystery solved?. Front Physiol 495:1–12.

    Google Scholar 

  • Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Rasola A, Forte M, Lippe G (2015) The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology. Physiol Rev 95:1111–1155

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Veronese P, Petronilli V (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem 268(2):1005–1010

    CAS  PubMed  Google Scholar 

  • Byrne AM, Lemasters JJ, Nieminen AL (1999) Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes. Hepatology 29:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Castilho RF, Kowaltowski AJ, Vercesi AE (1996) The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioenerg Biomembr 28:523–539

    Article  CAS  PubMed  Google Scholar 

  • Davies JM, Horwitz DA, Davies KJ (1993) Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic Biol Med 15:637–643

    Article  CAS  PubMed  Google Scholar 

  • Drahota Z, Kriváková P, Cervinková Z, Kmonícková E, Lotková H, Kucera O, Houstek J (2005) Tert-butyl hydroperoxide selectively inhibits mitochondrial respiratory-chain enzymes in isolated rat hepatocytes. Physiol Res 54:67–72

    CAS  PubMed  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Rev Mol Aspects Med 25:365–451

    Article  CAS  Google Scholar 

  • Favero TG, Colter D, Hooper PF, Abramson JJ (1998) Hypochlorous acid inhibits Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum. J Appl Physiol 84:425–430

    CAS  PubMed  Google Scholar 

  • Feissner RF, Skalska J, Gaum WE, Sheu SS (2009) Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark 14: 1197–1218

    Article  CAS  Google Scholar 

  • Forte M, Bernardi P (2005) Genetic dissection of the permeability transition pore. J Bioenerg Biomembr 37:121–128

    Article  CAS  PubMed  Google Scholar 

  • Giorgio V, Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte MA, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. PNAS 110(15):5887–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (2014) The c ring of the F1F0 ATP synthase forms the mitochondrial permeability transition pore: a critical appraisal. Front Oncol 4:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BJ, Levin MD, Doonan PJ, Petrenko NB, Davis CW, Patel VV, Madesh M (2010) Mitochondrial Complex II prevents hypoxia but not calcium- and proapoptotic Bcl-2 protein-induced mitochondrial potential loss. J Biol Chem 285:26494–26505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson D, Lardy HA (1967) Isolation of liver or kidney mitochondria. Meth Enzymol 10:94–101.

    Article  CAS  Google Scholar 

  • Jonas EA, Porter CA Jr, Beutner G, Mnatsakanyan N, Alavian K (2015) Cell death disguised: the mitochondrial permeability transition pore as the c-subunit of the F1FO ATP synthase. Pharmacol Res 99:382–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy CH, Church DF, Winston GW, Pryor WA (1992) tert-Butyl hydroperoxide-induced radical production in rat liver mitochondria. Free Radic Biol Med 12:381–387

    Article  CAS  PubMed  Google Scholar 

  • King M, Jefferson E (1997) Secretion and inactivation of myeloperoxidase by isolated neutrophils. J Leukoc Biol 61:293–302

    CAS  PubMed  Google Scholar 

  • Kokoszka JE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkov SM, Konovalova SA, Brailovskaya IV, Saris NEL (2016) To involvement the conformation of the adenine nucleotide translocase in opening the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria. Toxicol Vitro 32: 320–332.

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  CAS  PubMed  Google Scholar 

  • Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1–/– mitochondria. Biochim Biophys Acta 1757(5–6):590–595

    Article  CAS  PubMed  Google Scholar 

  • Kriváková P, Lábajová A, Cervinková Z, Drahota Z (2007) Inhibitory effect of t-butyl hydroperoxide on mitochondrial oxidative phosphorylation in isolated rat hepatocytes. Physiol Res 56:137–140

    PubMed  Google Scholar 

  • Kushnareva YE, Sokolova PM (2000) Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. Arch Biochem Biophys 376(2):377–388

    Article  CAS  PubMed  Google Scholar 

  • Lapidus RG, Sokolove PM (1994) The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. J Biol Chem 269:18931–18936

    CAS  PubMed  Google Scholar 

  • Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952.

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maksimchik YZ, Dremza IK, Lapshina EA, Cheshchevik VT, Sudnikovich EJu, Zabrodskaya SV, Zavodnik IB (2010) Rat liver mitochondria impairments under acute carbon tetrachloride-induced intoxication. Effects of melatonin. Biochem (Moscow) Suppl Ser A 4: 187–195.

    Article  Google Scholar 

  • Marsh D (1992) Analysis of the bilayer phase transition temperatures of phosphatidylcholines with mixed chains. Biophys J 61:1036–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore AL, Bonner WD (1982) Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol 70:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieminen AL, Byrne AM, Herman B, Lemasters JJ (1997) Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol 272:1286–1294

    Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    Article  CAS  PubMed  Google Scholar 

  • Pandya JD, Nukala VN, Sullivan PG (2013) Concentration dependent effect of calcium on brain mitochondrial bioenergetics and oxidative stress parameters. Front Neuroenergetics 5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Giorgi C, Marchi S, Missiroli S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2011) Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Signal 9:19–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng TI, Jou MJ (2010) Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 1201:183–188

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Cola C, Bernardi P (1993a) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. J Biol Chem 268:1011–1016

    CAS  PubMed  Google Scholar 

  • Petronilli V, Cola C, Massari S, Colonna R, Bernardi P (1993b) Physiological effectors modify voltage sensing by the cyclosporine A-sensitive permeability transition pore of mitochondria. J Biol Chem 268:21939–21945

    CAS  PubMed  Google Scholar 

  • Petronilli V, Costantini P, Scorrano L, Colonna R, Passamonti S, Bernardi P (1994) The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem 269:16638–16642

    CAS  PubMed  Google Scholar 

  • Petrosillo G, Moro N, Ruggiero FM, Paradies G (2009) Melatonin inhibits cardiolipin peroxidation in mitochondria and prevents the mitochondrial permeability transition and cytochrome c release. Free Radic Biol Med 47:969–974

    Article  CAS  PubMed  Google Scholar 

  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2004) Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J Biol Chem 279:53103–53108

    Article  CAS  PubMed  Google Scholar 

  • Richardson AP, Halestrap AP (2016) Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 473(9):1129–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    Article  CAS  PubMed  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797:907–912.

    Article  CAS  PubMed  Google Scholar 

  • Whiteman M, Rose P, Siau JL, Cheung NS, Tan GS, Halliwell B, Armstrong JS (2005) Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepG2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radic Biol Med 38:1571–1584

    Article  CAS  PubMed  Google Scholar 

  • Winterbourn CC, Brennan SO (1997) Characterization of the oxidation products of the reaction between reduced glutathione and hypochlorous acid. Biochem J 326:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YT, Whiteman M, Gieseg SP (2012) HOCl causes necrotic cell death in human monocyte derived macrophages through calcium dependent calpain activation. Biochim Biophys Acta 1823:420–429.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2:67–71

    Article  CAS  PubMed  Google Scholar 

  • Zavodnik IB, Dremza IK, Cheshchevik VT, Lapshina EA, Zamaraewa M (2013) Oxidative damage of rat liver mitochondria during exposure to t-butyl hydroperoxide. Role of Ca2+—ions in oxidative processes. Life Sci 92:1110–1117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the grant M13-102 from the Belarusian Republican Foundation for Fundamental Research (to Dr. Ilya Zavodnik). We are grateful to Ms. Lyudmila Kiryukhina for the help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya B. Zavodnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

The informed consent was obtained from all the individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovach, N.G., Cheshchevik, V.T., Lapshina, E.A. et al. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents. J Membrane Biol 250, 225–236 (2017). https://doi.org/10.1007/s00232-017-9953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-017-9953-2

Keywords

Navigation